Issue |
J. Space Weather Space Clim.
Volume 12, 2022
Topical Issue - Ionospheric plasma irregularities and their impact on radio systems
|
|
---|---|---|
Article Number | 27 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/swsc/2022023 | |
Published online | 08 July 2022 |
- Bahcivan H, Tsunoda R, Nicolls M, Heinselman C. 2010. Initial ionospheric observations made by the new Resolute incoherent scatter radar and comparison to solar wind IMF. Geophys Res Lett 37: L15103. https://doi.org/10.1029/2010GL043632. [Google Scholar]
- Beach TL. 2006. Perils of the GPS phase scintillation index (σϕ). Radio Sci 41(5): RS5S31. https://doi.org/10.1029/2005RS003356. [CrossRef] [Google Scholar]
- Bernhardt PA, Siefring CL. 2006. New satellite-based systems for ionospheric tomography and scintillation region imaging. Radio Sci 41: RS5S23. https://doi.org/10.1029/2005RS003360. [CrossRef] [Google Scholar]
- Burston R, Astin I, Mitchell C, Alfonsi L, Pedersen T, Skone S. 2010. Turbulent times in the northern polar ionosphere? J Geophys Res 115: A04301. https://doi.org/10.1029/2009JA014813. [Google Scholar]
- Burston R, Mitchell C, Astin I. 2016. Polar cap plasma patch primary linear instability growth rates compared. J Geophys Res Space Phys 121: 3439–3451. https://doi.org/10.1002/2015JA021895. [CrossRef] [Google Scholar]
- Carlson HC, Pedersen T, Basu S, Keskinen M. 2007. Case for a new process, not mechanism, for cusp irregularitiy production. J Geophys Res 112: A11304. https://doi.org/10.1029/2007JA012384. [Google Scholar]
- Coker C, Bust GS, Doe RA, Gaussiran TL. 2004. High-latitude plasma structure and scintillation. Radio Sci 39: RS1S15. https://doi.org/10.1029/2002RS002833. [Google Scholar]
- Coley WR, Heelis RA. 1998. Structure and occurrence of polar ionization patches. J Geophys Res 103(A2): 2201–2208. https://doi.org/10.1029/97JA03345. [CrossRef] [Google Scholar]
- Costa E, Kelley MC. 1977. Ionospheric scintillation calculations based on in situ irregularity spectra. Radio Sci 12: 797–809. https://doi.org/10.1029/RS012i005p00797. [CrossRef] [Google Scholar]
- Cowley SWH, Freeman MP, Lockwood M, Smith M. 1991. The ionospheric signatures of flux transfer events. In: CLUSTER – dayside polar cusp, vol. ESA SP-330, ESTEC, Nordvijk, The Netherlands, pp. 105–112. [Google Scholar]
- Crowley G. 1996. Critical review of ionospheric patches and blobs. In: Review of radio science 1993–1996, Stone WR (Ed.), Chap. 27, Oxford Univ. Press, New York, pp. 619–648. [Google Scholar]
- Crowley G, Carlson HC, Basu S, Denig WF, Buchau J, Reinisch BW. 1993. The dynamic ionospheric polar hole. Radio Sci 28(3): 401–413. https://doi.org/10.1029/92RS02878. [CrossRef] [Google Scholar]
- Deshpande K, Zettergren M, Spicher A, Lamarche L, Hirsch M, Redden M. 2021. Modeling high-latitude F-region ionospheric fluid instabilities: Linear and nonlinear evolution and observational signatures. In: Cross-scale coupling and energy transfer in the magnetosphere-ionosphere-thermosphere system, Deng Y, Verkhoglyadova O, Zhang S, Nishimura T (Eds.), Chap. 3.2, Elsevier, Amsterdam, Netherlands, pp. 127–175. [Google Scholar]
- Deshpande KB, Bust GS, Clauer CR, Rino CL, Carrano CS. 2014. Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere (SIGMA) I: High latitude sensitivity study of the model parameters. J Geophys Res Space Phys 119: 4026–4043. https://doi.org/10.1002/2013JA019699. [CrossRef] [Google Scholar]
- Deshpande KB, Zettergren MD. 2019. Satellite-Beacon Ionospheric-Scintillation Global Model of the Upper Atmosphere (SIGMA) III: Scintillation simulation using A physics-based plasma model. Geophys Res Lett 46(9): 4564–4572. https://doi.org/10.1029/2019GL082576. [CrossRef] [Google Scholar]
- Forte B. 2005. Optimum detrending of raw GPS data for scintillation measurements at auroral latitudes. J Atmos Sol-Terr Phys 67(12): 1100–1109. https://doi.org/10.1016/j.jastp.2005.01.011. [CrossRef] [Google Scholar]
- Forte B, Radicella SM. 2002. Problems in data treatment for ionospheric scintillation measurments. Radio Sci 37: 1096. https://doi.org/10.1029/2001RS002508. [Google Scholar]
- Ghobadi H, Spogli L, Alfonsi L, Cesaroni C, Cicone A, Linty N, Romano V, Cafaro M. 2020. Disentangling ionospheric refraction and diffraction effects in GNSS raw phase through fast iterative filtering technique. GPS Solut 24(85). https://doi.org/10.1007/s10291-020-01001-1. [CrossRef] [Google Scholar]
- Gillies RG, van Eyken A, Spanswick E, Nicolls M, Kelly J, et al. 2016. First observations from RISR-C incoherent scatter radar. Radio Sci 51: 1645–1659. https://doi.org/10.1002/2016RS006062. [CrossRef] [Google Scholar]
- Gondarenko N, Guzdar P. 1999. Gradient drift instability in high latitude plasma patches: Ion inertial effects. Geophys Res Lett 26(22): 3345–3348. https://doi.org/10.1029/1999GL003647. [CrossRef] [Google Scholar]
- Gondarenko N, Guzdar P. 2004a. Density and electric field fluctuations associated with the gradient drift instability in the high-latitude ionosphere. Geophys Res Lett 31(11). https://doi.org/10.1029/2004GL019703. [Google Scholar]
- Gondarenko N, Guzdar P. 2004b. Plasma patch structuring by the nonlinear evolution of the gradient drift instability in the high-latitude ionosphere. J Geophys Res Space Phys 109(A9). https://doi.org/10.1029/2004JA010504. [CrossRef] [Google Scholar]
- Gondarenko NA, Guzdar PN. 2006a. Nonlinear three-dimentional simulations of mesoscale structuring by multiple drives in high-latitude plasma patches. J Geophys Res 111: A08302. https://doi.org/10.1029/2006JA011701. [Google Scholar]
- Gondarenko NA, Guzdar PN. 2006b. Simulations of the scintillation-producing irregularities in high-latitude plasma patches. Geophys Res Lett 33(22). https://doi.org/10.1029/2006GL028033. [Google Scholar]
- Guzdar P, Gondarenko N, Chaturvedi P, Basu S. 1998. Three-dimensional nonlinear simulations of the gradient drift instability in the high-latitude ionosphere. Radio Sci 33(6): 1901–1913. https://doi.org/10.1029/98RS01703. [CrossRef] [Google Scholar]
- Heinselman CJ, Nicolls MJ. 2008. A Bayesian approach to electric field and E-region neutral wind estimation with the Poker Flat Advanced Modular Incoherent Scatter Radar. Radio Sci 43: RS5013. https://doi.org/10.1029/2007RS003805. [Google Scholar]
- Hosokawa K, Shiokawa K, Otsuka Y, Ogawa T, St-Maurice J-P, Sofko GJ, Andre DA. 2009. Relationship between polar cap patches and field-aligned irregularities as observed with an all-sky airglow imager at Resolute Bay and the PolarDARN radar at Rankin Inlet. J Geophys Res 114: A03306. https://doi.org/10.1029/2008JA013707. [Google Scholar]
- Hosokawa K, Taguchi S, Ogawa Y. 2016. Edge of polar cap patches. J Geophys Res Space Phys 121: 3410–3420. https://doi.org/10.1002/2015JA021960. [CrossRef] [Google Scholar]
- Huba J, Mitchell H, Keskinen M, Fedder J, Satyanarayana P, Zalesak S. 1988. Simulations of plasma structure evolution in the high-latitude ionosphere. Radio Sci 23(4): 503–512. https://doi.org/10.1029/RS023i004p00503. [CrossRef] [Google Scholar]
- Jayachandran PT, Hamza AM, Hosokawa K, Mezaoui H, Shiokawa K. 2017. GPS amplitude and phase scintillation associated with polar cap auroral forms. J Atmos Sol-Terr Phys 164: 185–191. https://doi.org/10.1016/j.jastp.2017.08.030. [CrossRef] [Google Scholar]
- Jayachandran PT, Langley RB, MacDougall JW, Mushini SC, Pokhotelov D, et al. 2009. Canadian high arctic ionospheric network (CHAIN). Radio Sci 44: RS0A03. https://doi.org/10.1029/2008RS004046. [Google Scholar]
- Jin Y, Moen JI, Miloch WJ. 2014. GPS scintillaiton effects associated with polar cap patches and substorm auroral activity: direct comparison. J Space Weather Space Clim 4: A23. https://doi.org/10.1051/swsc/2014019. [CrossRef] [EDP Sciences] [Google Scholar]
- Jin Y, Moen JI, Miloch WJ. 2015. On the collocation of the cusp aurora and the GPS phase scintillation: A statistical study. J Geophys Res Space Phys 120(10): 9176–9191. https://doi.org/10.1002/2015JA021449. [CrossRef] [Google Scholar]
- Jin Y, Moen JI, Oksavik K, Spicher A, Clausen LBN, Miloch WJ. 2017. GPS scintillations associated with cusp dynamics and polar cap patches. J Space Weather Space Clim 7: A23. https://doi.org/10.1051/swsc/2017022. [Google Scholar]
- Kelley MC, Kintner PM. 1978. Evidence for two-dimensional inertial turbulence in a cosmic-scale low-β plasma. Astrophys J 220: 339–345. https://doi.org/10.1086/155911. [CrossRef] [Google Scholar]
- Kelly J, Heinselman CJ. 2009. Initial results for Poker Flat Incoherent Scatter Radar (PFISR). J Atmos Sol-Terr Phys 71: 635. https://doi.org/10.1016/j.jastp.2009.01.009. [CrossRef] [Google Scholar]
- Keskinen MJ, Ossakow SL. 1981. On the spatial power spectrum of the E × B gradient drift instability in ionospheric plasma clouds. J Geophys Res 86: 6947–6950. https://doi.org/10.1029/JA086iA08p06947. [CrossRef] [Google Scholar]
- Kintner PM, Ledvina BM, de Paula ER. 2007. GPS and ionospheric scintillations. Space Weather 5: S09003. https://doi.org/10.1029/2006SW000260. [Google Scholar]
- Kivanç O, Heelis RA. 1997. Structure in ionospheric number density and velocity associated with polar cap ionization patches. J Geophys Res 102(A1): 307–318. https://doi.org/10.1029/96JA03141. [CrossRef] [Google Scholar]
- Knepp DL. 1983. Multiple phase-screen calculation of the temporal behavior of stochastic waves. Proc IEEE 71: 722–737. https://doi.org/10.1109/PROC.1983.12660. [CrossRef] [Google Scholar]
- Lamarche LJ, Varney RH, Siefring CL. 2020. Analysis of plasma irregularities on a range of scintillation-scales using the resolute bay incoherent scatter radars. J Geophys Res Space Phys 125(3). https://doi.org/10.1029/2019JA027112. [CrossRef] [Google Scholar]
- Linson LM, Workman JB. 1970. Formation of striation in ionospheric plasma clouds. J Geophys Res 75(16): 3211–3219. https://doi.org/10.1029/JA075i016p03211. [CrossRef] [Google Scholar]
- Lockwood M, Carlson HC. 1992. Production of polar cap electron density patches by transient magnetopause reconnection. Geophys Res Lett 19(17): 1731–1734. https://doi.org/10.1029/92GL01993. [CrossRef] [Google Scholar]
- Lorentzen DA, Moen J, Oksavik K, Sigernes F, Saito Y, Johnsen MG. 2010. In situ measurement of a newly created polar cap patch. J Geophys Res Space Phys 115(A12). [Google Scholar]
- Makarevich RA. 2014. Symmetry considerations in the two-fluid theory of the gradient-drift instability in the lower ionosphere. J Geophys Res Space Phys 119: 7902–7913. https://doi.org/10.1002/2014JA020292. [CrossRef] [Google Scholar]
- McCaffrey AM, Jayachandran PT. 2019. Determination of the refractive contribution to GPS phase “scintillation”. J Geophys Res Space Phys 124. https://doi.org/10.1029/2018JA025759. [Google Scholar]
- Milan SE, Lester M, Yeoman TK. 2002. HF radar polar patch formation revisited: Summer and winter variations in dayside plasma structuring. Ann Geophys 20: 487–499. https://doi.org/10.5194/angeo-20-487-2002. [CrossRef] [Google Scholar]
- Mitchell H Jr, Fedder J, Keskinen M, Zalesak S. 1985. A simulation of high latitude F-layer instabilities in the presence of magnetosphere-ionosphere coupling. Geophys Res Lett 12(5): 283–286. https://doi.org/10.1029/GL012i005p00283. [CrossRef] [Google Scholar]
- Moen J, Oksavik K, Abe T, Lester M, Saito Y, Bekkeng TA, Jacobsen KS. 2012. First in situ measurements of HF radar echoing targets. Geophys Res Lett 39: L07104. https://doi.org/10.1029/2012GL051407. [Google Scholar]
- Mushini SC, Jayachandran PT, Langley RB, MacDougall JW, Pokhotelov D. 2012. Improved amplitude- and phase-scintillation indices derived from wavelet detrended high-latitude GPS data. GPS Solut 16: 363–373. https://doi.org/10.1007/s10291-011-0238-4. [Google Scholar]
- Nishimura Y, Sadler FB, Varney RH, Gilles R, Zhang SR, Coster AJ, Nishitani N, Otto A. 2021. Cusp dynamics and polar cap patch formation associated with a small IMF southward turning. J Geophys Res Space Phys 126: e2020JA029090. https://doi.org/10.1029/2020JA029090. [Google Scholar]
- Oksavik K, Moen J, Bekkeng TA, Bekkeng JK. 2012. In situ measurements of plasma irregularity growth in the cusp ionosphere. J Geophys Res 117: A11301. https://doi.org/10.1029/2012JA017835. [Google Scholar]
- Oksavik K, Ruohoniemi JM, Greenwald RA, Baker JBH, Moen J, Carlson HC, Yeoman TK, Lester M. 2006. Observations of isolated polar cap patches by the European Incoherent Scatter (EISCAT) Svalbard and Super Dual Auroral Radar Network (SuperDARN) Finland radars. J Geophys Res 111: A05310. https://doi.org/10.1029/2005JA011400. [Google Scholar]
- Perry GW, St.-Maurice J-P. 2018. A polar-cap patch detection algorithm for the Advanced Modular Incoherent Scatter Radar System. Radio Sci 53: 1225–1244. https://doi.org/10.1029/2018RS006600. [CrossRef] [Google Scholar]
- Prikryl P, Ghoddousi-Fard R, Kunduri BSR, Thomas EG, Coster AJ, Jayachandran PT, Spanswick E, Danskin DW. 2013. GPS phase scintillation and proxy index at high latitudes during a moderate geomagnetic storm. Ann Geophys 31(5): 805–816. [CrossRef] [Google Scholar]
- Ren J, Zou S, Gillies RG, Donovan E, Varney RH. 2018. Statistical characteristics of polar cap patches observed by RISR-C. J Geophys Res Space Phys 123: 6981–6995. https://doi.org/10.1029/2018JA025621. [CrossRef] [Google Scholar]
- Ren J, Zou S, Kendall E, Coster A, Sterne K, Ruohoniemi M. 2020. Direct observations of a polar cap patch formation associated with dayside reconnection driven fast flow. J Geophys Res Space Phys 124: e2019JA027745. https://doi.org/10.1029/2019JA027745. [Google Scholar]
- Rino CL. 2010. The theory of scintillation with applications in remote sensing, John Wiley & Sons, Hoboken, NJ. ISBN 9780470644775. https://doi.org/10.1002/9781118010211, URL http://books.google.com/books?id=TXNZxBfLBrUC. [Google Scholar]
- Shkarofsky IP. 1968. Generalized turbulence space-correlation and wave-number spectrum-function pairs. Can J Phys 46: 2133. https://doi.org/10.1139/p68-562. [CrossRef] [Google Scholar]
- Siefring CL, Bernhardt PA, James HG, Parris RT. 2015. The CERTO beacon on CASSIOPE/e-POP and experiments using high-power HF ionospheric heaters. Space Sci Rev 189: 107–122. https://doi.org/10.1007/s11214-014-0110-2. [CrossRef] [Google Scholar]
- Sojka JJ. 2013. Ionosphere induced scintillation: A space weather enigma. Space Weather 11: 134–137. https://doi.org/10.1002/swe.20041. [CrossRef] [Google Scholar]
- Spicher A, Cameron T, Grono EM, Yakymenko KN, Buchert SC, Clausen LBN, Knudsen DJ, McWilliams KA, Moen JI. 2015. Observations of polar cap patches and calcualtion of gradient drift instability growth times: A Swarm case study. Geophys Res Lett 42: 201–206. https://doi.org/10.1002/2014GL062590. [CrossRef] [Google Scholar]
- Spicher A, Deshpande K, Jin Y, Oksavik K, Zettergren MD, Clausen LBN, Moen JI, Hairston MR, Baddeley L. 2020. On the production of ionospheric irregularities via Kelvin-Helmholtz instability associated with cusp flow channels. J Geophys Res Space Phys 125(6): e2019JA027734. https://doi.org/10.1029/2019JA027734. [CrossRef] [Google Scholar]
- Spogli L, Alfonsi L, De Franceschi G, Romano V, Aquino MHO, Dodson A. 2009. Climatology of GPS ionospheric scintillations over high and mid-latitude European regions. Ann Geophys 27: 3429–3437. https://doi.org/10.5194/angeo-27-3429-2009. [CrossRef] [Google Scholar]
- Spogli L, Ghobadi H, Cicone A, Alfonsi L, Cesaroni C, Linty N, Romano V, Cafaro M. 2022. Adaptive phase detrending for GNSS scintillation detection: A Case study over Antarctica. IEEE Geosci Remote Sens Lett 19. https://doi.org/10.1109/LGRS.2021.3067727. [CrossRef] [Google Scholar]
- Thayyil JP, McCaffrey AM, Wang Y, Themens DR, Watson C, Reid B, Zhang Q, Xing Z. 2021. Global positioning system (GPS) scintillation associated with a polar cap patch. Remote Sens 13(10). https://doi.org/10.3390/rs13101915. [CrossRef] [Google Scholar]
- Tinin MV. 2015. Eliminating diffraction effects during multi-frequency correction in global navigation satellite systems. J Geod 89: 491–503. https://doi.org/10.1007/s00190-015-0794-4. [CrossRef] [Google Scholar]
- Tsunoda RT. 1988. High-latitude F region irregularities: A review and synthesis. Rev Geophys 26: 719–760. https://doi.org/10.1029/RG026i004p00719. [CrossRef] [Google Scholar]
- Wang Y, Zhang Q-H, Jayachandran PT, Lockwood M, Zhang S-R, Moen J, Xing Z-Y, Ma Y-Z, Lester M. 2016. A comparison between large-scale irregularities and scintillation in the polar ionosphere. Geophys Res Lett 43: 4790–4798. https://doi.org/10.1002/2016GL069230. [CrossRef] [Google Scholar]
- Wang Y, Zhang Q-H, Jayachandran PT, Moen J, Xing Z-Y, Chadwick R, Ma Y-Z, Ruohoniemi JM, Lester M. 2018. Experimental evidence on the dependence of the standard GPS phase scintillation index on the ionospheric plasma drift around noon sector of the polar ionosphere. J Geophys Res Space Phys 123: 2370–2378. https://doi.org/10.1002/2017JA024805. [Google Scholar]
- Weber EJ, Buchau J, Moore JG, Sharber JR, Livingston RC, Winningham JD, Reinisch BW. 1984. F layer ionization patches in the polar cap. J Geophys Res 89(A3): 1683–1694. https://doi.org/10.1029/JA089iA03p01683. [CrossRef] [Google Scholar]
- Yeh KC, Liu CH. 1982. Radio wave scintillations in the ionosphere. IEEE Proc 70: 324–360. [CrossRef] [Google Scholar]
- Zettergren MD, Semeter JL, Dahlgren H. 2015. Dynamics of density cavities generated by frictional heating: Formation, distortion, and instability. Geophys Res Lett 42(23): 10120–10125. https://doi.org/10.1002/2015GL066806. [CrossRef] [Google Scholar]
- Zettergren MD, Snively JB. 2015. Ionospheric response to infrasonic-acoustic waves generated by natural hazard events. J Geophys Res Space Phys 120(9): 8002–8024. https://doi.org/10.1002/2015JA021116. [CrossRef] [Google Scholar]
- Zhang Q-H, Ma Y-Z, Jayachandran PT, Moen J, Lockwood M, et al. 2017. Polar cap hot patches: Enhanced density structures differetn from the classical patches in the ionosphere. Geophys Res Lett 44: 8159–8167. https://doi.org/10.1002/2017GL073439. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.