Open Access
Review
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
Topical Issue - Ionospheric plasma irregularities and their impact on radio systems
|
|
---|---|---|
Article Number | 22 | |
Number of page(s) | 29 | |
DOI | https://doi.org/10.1051/swsc/2022016 | |
Published online | 29 June 2022 |
- Aarons J. 1982. Global morphology of ionospheric scintillations. Proc IEEE 70: 360–378. https://doi.org/10.1109/PROC.1982.12314. [CrossRef] [Google Scholar]
- Aarons J. 1985. Construction of a model of equatorial scintillation intensity. Radio Sci 20: 397–402. https://doi.org/10.1029/RS020i003p00397. [CrossRef] [Google Scholar]
- Aarons J, MacKenzie E, Bhavnani K. 1980b. High-latitude analytical formulas for scintillation levels. Radio Sci 15: 115–127. https://doi.org/10.1029/RS015i001p00115. [CrossRef] [Google Scholar]
- Abdu MA, Sobral JHA, Batista IS, Rios VH, Medina C. 1998. Equatorial spread-F occurrence statistics in the American longitudes: Diurnal, seasonal and solar cycle variations. Adv Space Res 22: 851–854. https://doi.org/10.1016/S0273-1177(98)00111-2. [CrossRef] [Google Scholar]
- Aquino M, Moore T, Dodson A, Waugh S, Souter J, Rodrigues FS. 2005. Implications of ionospheric scintillation for GNSS users in Northern Europe. J Navigation 58: 241–256. https://doi.org/10.1017/S0373463305003218. [CrossRef] [Google Scholar]
- Banakh VA, Mironov VL. 1979. Phase approximation of the Huygens-Kirchhoff method in problems of space-limited optical-beam propagation in turbulent atmosphere. Opt Lett 4: 259–261. https://doi.org/10.1364/OL.4.000259. [CrossRef] [Google Scholar]
- Basu S, Basu S, Hanson WB. 1981. The role of in situ measurements in scintillation modelling. In: Symposium on the Effect of the Ionosphere on Radiowave Systems. Pap. Nav. Res. Lab, Washington, DC. pp. 4A–8. [Google Scholar]
- Basu S, Basu S, Khan BK. 1976. Model of equatorial scintillation from in situ measurements. Radio Sci 11: 821–832. https://doi.org/10.1029/RS011i010p00821. [CrossRef] [Google Scholar]
- Basu S, Basu S, MacKenzie E, Coley WR, Sharber JR, Hoegy WR. 1990. Plasma structuring by the gradient drift instability at high latitudes and comparison with velocity shear driven processes. J Geophys Res Space Phys 95: 7799–7818. https://doi.org/10.1029/JA095iA06p07799. [CrossRef] [Google Scholar]
- Basu S, Basu S, MacKenzie E, Fougere PF, Coley WR, Maynard NC, Winningham JD, Sugiura M, Hanson WB, Hoegy WR. 1988a. Simultaneous density and electric field fluctuation spectra associated with velocity shears in the auroral oval. J Geophys Res 93: 115–136. https://doi.org/10.1029/JA093iA01p00115. [CrossRef] [Google Scholar]
- Basu S, Basu S, McClure JP, Hanson WB, Whitney HE. 1983. High resolution topside in situ data of electron densities and VHF/GHz scintillations in the equatorial region. J Geophys Res Space Phys 88: 403–415. https://doi.org/10.1029/JA088iA01p00403. [CrossRef] [Google Scholar]
- Basu S, Groves K, Basu S, Sultana P. 2002. Specification and forecasting of scintillations in communication/navigation links: Current status and future plans. J Atm Solar Terr Phys 64: 1745–1754. https://doi.org/10.1016/S1364-6826(02)00124-4. [CrossRef] [Google Scholar]
- Basu S, Kudeki E, Basu S, Valladares CE, Weber EJ, et al. 1996. Scintillations, plasma drifts, and neutral winds in the equatorial ionosphere after sunset. J Geophys Res 101: 26795–26809. https://doi.org/10.1029/96JA00760. [CrossRef] [Google Scholar]
- Basu S, MacKenzie E, Basu S. 1988b. Ionospheric constraints on VHF/UHF communications links during solar maximum and minimum periods. Radio Sci 23: 363–378. https://doi.org/10.1029/RS023i003p00363. [CrossRef] [Google Scholar]
- Basu S, Weber EJ, Bullett TW, Keskinen MJ, MacKenzie E, Doherty P, Sheehan R, Kuenzler H, Ning P, Bongiolatti J. 1998. Characteristics of plasma structuring in the cusp/cleft region at Svalbard. Radio Sci 33: 1885–1899. https://doi.org/10.1029/98RS01597. [CrossRef] [Google Scholar]
- Beghi A, Cenedese A, Masiero A. 2011. Multiscale stochastic approach for phase screens synthesis. Appl Opt 50: 4124–4133. https://doi.org/10.1364/AO.50.004124. [CrossRef] [Google Scholar]
- Beghi A, Cenedese A, Masiero A. 2013. Multiscale phase screen synthesis based on local principal component analysis. Appl Opt 52: 7987–8000. https://doi.org/10.1364/AO.52.007987. [CrossRef] [Google Scholar]
- Belcher DP. 2008. Theoretical limits on SAR imposed by the ionosphere. IET Radar, Sonar and Navigation 2: 435–448. https://doi.org/10.1049/iet-rsn:20070188. [CrossRef] [Google Scholar]
- Béniguel Y. 2002. Global Ionospheric Propagation Model (GIM): A propagation model for scintillations of transmitted signals. Radio Sci 37: 4–1–4–13. https://doi.org/10.1029/2000RS002393. [Google Scholar]
- Béniguel Y. 2019. Ionospheric scintillations: indices and modeling. Radio Sci 54: 618–632. https://doi.org/10.1029/2018RS006655. [Google Scholar]
- Béniguel Y, Hamel P. 2011. A global ionosphere scintillation propagation model for equatorial regions. J Space Weather Space Clim 1: A04. https://doi.org/10.1051/swsc/2011004. [Google Scholar]
- Bhattacharyya A, Rastogi RG. 1985. Amplitude scintillations during the early and late phases of evolution of irregularities in th enighttime equatorial ionosphere. Radio Sci 20: 935–946. https://doi.org/10.1029/RS020i004p00935. [CrossRef] [Google Scholar]
- Bhattacharyya A, Yeh KC, Franke SJ. 1992. Deducing turbulence parameters from transionospheric scintillation measurements. Space Sci Rev 61: 335–386. https://doi.org/10.1007/BF00222311. [CrossRef] [Google Scholar]
- Booker HG. 1958. The use of radio stars to study irregular refraction of radio waves in the ionosphere. Proc IRE 46: 298–314. https://doi.org/10.1109/JRPROC.1958.286791. [CrossRef] [Google Scholar]
- Booker HG, Clemmow PC. 1950. The concept of an angular spectrum of plane waves, and its relation to that of polar diagram and aperture distribution. Proc Inst Elect Engrs Pt III 97: 11–17. https://doi.org/10.1049/pi-3.1950.0002. [Google Scholar]
- Booker HG, Ratcliffe JA, Shinn DH. 1950. Diffraction from an irregular screen with applications to ionospheric problems. Phil Trans Roy Soc A 242: 579–607. https://doi.org/10.1098/rsta.1950.0011. [Google Scholar]
- Bowhill SA. 1961. Statistics of a radio wave diffracted by a random ionosphere. J Res Natl Bur Stand-D 65D: 275–292. [Google Scholar]
- Box GEP, Jenkins GM. 1976. Time series analysis: forecasting and control. Holden-Day, San Francisco. [Google Scholar]
- Bramley EN. 1954. The diffraction of waves by an irregular refracting medium. Proc Roy Soc Lond A 225: 515–518. https://doi.org/10.1098/rspa.1954.0219. [CrossRef] [Google Scholar]
- Bramley EN. 1967. Diffraction of an angular spectrum of waves by a phase-changing screen. J Atm Terr Phys 29: 1–28. https://doi.org/10.1016/0021-9169(67)90155-9. [CrossRef] [Google Scholar]
- Briggs BH. 1968. On the analysis of moving patterns in geophysics – I. Correlation analysis. J Atm Terr Phys 30: 1777–1788. https://doi.org/10.1016/0021-9169(68)90097-4. [CrossRef] [Google Scholar]
- Briggs BH. 1984. The analysis of spaced sensor records by correlation techniques. In: Middle atmosphere program. Handbook for MAP, vol 13, Vincent RE, (Ed.) SCOSTEP Secr. Univ. of Ill, Urbana. pp. 166–186. [Google Scholar]
- Briggs BH, Parkin IA. 1963. On the variation of radio star and satellite scintillations with zenith angle. J Atm Terr Phys 25: 339–366. https://doi.org/10.1016/0021-9169(63)90150-8. [CrossRef] [Google Scholar]
- Burckel WP, Gray RN. 2013. Turbulence phase screens based on polar-logarithmic spectral sampling. Appl Opt 52: 4672–4680. https://doi.org/10.1364/AO.52.004672. [CrossRef] [Google Scholar]
- Butler HE. 1951. Observations of stellar scintillation. Proc IRE 54: 321–340. https://www.jstor.org/stable/20488540. [Google Scholar]
- Camps A, Barbosa J, Juan M, Blanch E, Altadill D, González G, Vazquez G, Riba J, Orús R. 2017. Improved modelling of ionospheric disturbances for remote sensing and navigation. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). pp. 2682–2685. https://doi.org/10.1109/IGARSS.2017.8127548. [CrossRef] [Google Scholar]
- Camps A, Park H, Foti G, Gommenginger C. 2016. Ionospheric effects in GNSS-reflectometry from space. IEEE J Sel Top Appl Earth Obs Remote Sens 9: 5851–5861. https://doi.org/10.1109/JSTARS.2016.2612542. [CrossRef] [Google Scholar]
- Carbillet M, Riccardi A. 2010. Numerical modeling of atmospherically perturbed phase screens: New solutions for classical fast Fourier transform and Zernike methods. Appl Opt 49: G47–G52. https://doi.org/10.1364/AO.49.000G47. [CrossRef] [Google Scholar]
- Carlson HC, Pedersen T, Basu S, Keskinen M, Moen J. 2007. Case for a new process, not mechanism, for cusp irregularity production. J Geophys Res Space Phys 112: A11, 304. https://doi.org/10.1029/2007JA012384. [Google Scholar]
- Carrano CS, Groves KM, Caton RG. 2012. Simulating the impacts of ionospheric scintillation on L band SAR image formation. Radio Sci 47: RS0L20. https://doi.org/10.1029/2011RS004956. [Google Scholar]
- Carrano CS, Groves KM, Caton RG, Rino CL, Straus PR. 2011. Multiple phase screen modeling of ionospheric scintillation along radio occultation raypaths. Radio Sci 46: RS0D07. https://doi.org/10.1029/2010RS004591. [CrossRef] [Google Scholar]
- Carrano CS, Rino CL. 2015. A theory of scintillation for two-component power law irregularity spectra: Overview and numerical results. Radio Sci 51: 789–813. https://doi.org/10.1002/2015RS005903. [Google Scholar]
- Chen S-P, Bilitza D, Liu J-Y, Caton R, Chang LC, Yeh W-H. 2017. An empirical model of L-band scintillation S4 index constructed by using FORMOSAT-3/COSMIC data. Adv Space Res 60: 1015–1028. https://doi.org/10.1016/j.asr.2017.05.031. [CrossRef] [Google Scholar]
- Cho JYN, Kelley MC. 1993. Polar mesosphere summer radar echoes: Observations and current theories. Rev Geophys 31: 243–265. https://doi.org/10.1029/93RG01535. [CrossRef] [Google Scholar]
- Clifford SF. 1978. The classical theory of wave propagation in a turbulent medium. In: Laser beam propagation in the atmosphere. Strohbehn JW (Ed.) Springer-Verlag, Berlin. pp. 9–43. [CrossRef] [Google Scholar]
- Clifford SF, Yura HT. 1974. Equivalence of two theories of strong optical scintillation. J Opt Soc Am 64: 1641–1644. https://doi.org/10.1364/JOSA.64.001641. [CrossRef] [Google Scholar]
- Conker RS, El-Arini MB, Hegarty CJ, Hsiao T. 2003. Modeling the effects of ionospheric scintillation on GPS/Satellite-Based Augmentation System availability. Radio Sci 38: 1–1–1–23. https://doi.org/10.1029/2000RS002604. [Google Scholar]
- Consolini G, De Michelis P, Alberti T, Coco I, Giannattasio F, Tozzi R, Carbone V. 2000. Intermittency and passive scalar nature of electron density fluctuations in the high-latitude ionosphere at Swarm altitude. Geophys Res Lett 47: e2020GL089628. https://doi.org/10.1029/2020GL089628. [Google Scholar]
- Cooley JW, Tukey JW. 1965. An algorithm for the machine calculation of complex Fourier series. Math Comput 19: 297–301. https://doi.org/10.1090/S0025-5718-1965-0178586-1. [CrossRef] [Google Scholar]
- Corrsin S. 1959. Outline of some topics in homogeneous turbulent flow. J Geophys Res 64: 2134–2150. https://doi.org/10.1029/JZ064i012p02134. [CrossRef] [Google Scholar]
- Costa E, Fougere PF, Basu S. 1988. Cross-correlation analysis and interpretation of spaced-receiver measurements. Radio Sci 23: 141–162. https://doi.org/10.1029/RS023i002p00141. [CrossRef] [Google Scholar]
- Crane RK. 1976. Spectra of ionospheric scintillation. J Geophys Res 81: 2041–2050. https://doi.org/10.1029/JA081i013p02041. [CrossRef] [Google Scholar]
- Crane RK. 1977. Ionospheric scintillation. Proc IEEE 65: 180–199. https://doi.org/10.1109/PROC.1977.10456. [CrossRef] [Google Scholar]
- Davidson PA. 2004. Turbulence. An introduction for scientists and engineers. Oxford University Press, Oxford. [Google Scholar]
- De Livera AM, Hyndman RJ, Snyder RD. 2012. Forecasting time series with complex seasonal patterns using exponential smoothing. J Am Stat Assoc 106: 1513–1527. https://doi.org/10.1198/jasa.2011.tm09771. [CrossRef] [Google Scholar]
- De Michelis P, Pignalberi A, Consolini G, Coco I, Tozzi R, Pezzopane M, Giannattasio F, Balasis G. 2020. On the 2015 St. Patrick’s storm turbulent state of the ionosphere: hints from the Swarm mission. J Geophys Res Space Phys 125: e2020JA027934. https://doi.org/10.1029/2020JA027934. [CrossRef] [Google Scholar]
- Deshpande KB, Bust GS, Clauer CR, Rino CL, Carrano CS. 2014. Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere (SIGMA) I: High-latitude sensitivity study of the model parameters. J Geophys Res Space Phys 119: 4026–4043. https://doi.org/10.1002/2013JA019699. [CrossRef] [Google Scholar]
- Deshpande KB, Bust GS, Clauer CR, Scales WA, Frissell NA, Ruohoniemi JM, Spogli L, Mitchell C, Weatherwax AT. 2016. Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere (SIGMA) II: Inverse modeling with high-latitude observations to deduce irregularity physics. J Geophys Res Space Phys 121: 9188–9203. https://doi.org/10.1002/2016JA022943. [CrossRef] [Google Scholar]
- Deshpande KB, Zettergren MD. 2019. Satellite-Beacon Ionospheric-Scintillation Global Model of the upper Atmosphere (SIGMA) III: Scintillation simulation using a physics-based plasma model. Geophys Res Lett 46: 4564–4572. https://doi.org/10.1029/2019GL082576. [CrossRef] [Google Scholar]
- Dyrud L, Krane B, Oppenheim M, Pécseli HL, Trulsen J, Wernik AW. 2008. Structure functions and intermittency in ionospheric plasma turbulence. Nonlin Processes Geophys 15: 847–862. https://doi.org/10.5194/npg-15-847-2008. [CrossRef] [Google Scholar]
- Ellison MA, Seddon H. 1952. Some experiments on the scintillation of stars and planets. MNRAS 112: 73–87. https://doi.org/10.1093/mnras/112.1.73. [CrossRef] [Google Scholar]
- Fante RL. 1975a. Electromagnetic beam propagation in turbulent medium. Proc IEEE 63: 1669–1692. https://doi.org/10.1109/PROC.1975.10035. [CrossRef] [Google Scholar]
- Fante RL. 1975b. Electric field spectrum and intensity covariance of a wave in a random medium. Radio Sci 10: 77–85. https://doi.org/10.1029/RS010i001p00077. [CrossRef] [Google Scholar]
- Fejer JA. 1953. The diffraction of waves in passing through an irregular refracting medium. Proc Roy Soc Lond A 220: 455–471. https://doi.org/10.1098/rspa.1953.0199. [CrossRef] [Google Scholar]
- Forte B, Radicella SM. 2004. Geometrical control of scintillation indices: What happens for GPS satellitess. Radio Sci 39: RS5014. https://doi.org/10.1029/2002RS002852. [Google Scholar]
- Franke SJ, Liu CH. 1983. Observations and modeling of multi-frequency VHF and GHz scintillations in the equatorial region. J Geophys Res 88: 7075–7085. https://doi.org/10.1029/JA088iA09p07075. [CrossRef] [Google Scholar]
- Franke SJ, Liu CH. 1985. Modeling of equatorial multifrequency scintillation. Radio Sci 20: 403–415. https://doi.org/10.1029/RS020i003p00403. [CrossRef] [Google Scholar]
- Franke SJ, Liu CH, Fang DJ. 1984. Multifrequency study of ionospheric scintillation at Ascension Island. Radio Sci 19: 695–706. https://doi.org/10.1029/RS019i003p00695. [CrossRef] [Google Scholar]
- Fremouw EJ. 1980a. Geometrical control of the ratio of intensity and phase scintillation indices. J Atm Terr Phys 42: 775–782. https://doi.org/10.1016/0021-9169(80)90080-X. [CrossRef] [Google Scholar]
- Fremouw EJ, Larsinger JM. 1981. Recent high-latitude improvements in a computer-based scintillation model. In: Effect of the ionosphere on radiowave systems. Goodman JM, Clarke FD, Aarons J (Eds.) Naval Research Lab, Washington DC. pp. 141–154. [Google Scholar]
- Fremouw EJ, Rino CL. 1973. An empirical model for average F: layer scintillation at VHF/UHF. Radio Sci 8: 213–222. https://doi.org/10.1029/RS008i003p00213. [CrossRef] [Google Scholar]
- Fremouw EJ, Secan JA. 1984. Modeling and scientific application of scintillation results. Radio Sci 19: 687–694. https://doi.org/10.1029/RS019i003p00687. [CrossRef] [Google Scholar]
- Ghafoori F, Skone S. 2014. Impact of equatorial ionospheric irregularities on GNSS receivers using real and synthetic scintillation signals. Radio Sci 50: 294–317. https://doi.org/10.1002/2014RS005513. [Google Scholar]
- Gochelashvily KS, Shishov VI. 1975. Saturation of laser irradiance fluctuations beyond a turbulent layer. Opt Quant Electron 7: 524–536. https://doi.org/10.1007/BF00619331. [CrossRef] [Google Scholar]
- Gondarenko NA, Guzdar PN. 2004. Plasma patch structuring by the nonlinear evolution of the gradient drift instability in the high-latitude ionosphere. J Geophys Res Space Phys 109(A09): 301. https://doi.org/10.1029/2004JA010504. [CrossRef] [Google Scholar]
- Gondarenko NA, Guzdar PN. 2006. Nonlinear three-dimensional simulations of mesoscale structuring bymultiple drives in high-latitude plasma patches. J Geophys Res 111(A08): 302. https://doi.org/10.1029/2006JA011701. [Google Scholar]
- Gray AL, Mattar KE, Sofko G. 2000. Influence of ionospheric electron density fluctuations on satellite radar interferometry. Geophys Res Lett 27: 1451–1454. https://doi.org/10.1029/2000GL000016. [CrossRef] [Google Scholar]
- Grimault C. 1998. A multiple phase screen technique for electromagnetic wave propagation through random ionospheric irregularities. Radio Sci 33: 595–605. https://doi.org/10.1029/97RS03552. [CrossRef] [Google Scholar]
- Groves KM, Basu S, Weber EJ, Smitham M, Kuenzler H, et al. 1997. Equatorial scintillation and system support. Radio Sci 32: 2047–2064. https://doi.org/10.1029/97RS00836. [CrossRef] [Google Scholar]
- Guio P, Pécseli HL. 2021. The impact of turbulence on the ionosphere and magnetosphere. Front Astron Space Sci 7(573): 746. https://doi.org/10.3389/fspas.2020.573746. [CrossRef] [Google Scholar]
- Guo K, Zhao Y, Liu Y, Wang J, Zhang C, Zhu Y. 2017. Study of ionospheric scintillation characteristics in Australia with GNSS during 2011–2015. Adv Space Res 59: 2909–2922. https://doi.org/10.1016/j.asr.2017.03.007. [CrossRef] [Google Scholar]
- Gurvich AS, Tatarskii VI. 1975. Coherence and intensity fluctuations of light in the turbulent atmosphere. Radio Sci 10: 3–14. https://doi.org/10.1029/RS010i001p00003. [CrossRef] [Google Scholar]
- Hardin RH, Tappert FD, Whippany NJ. 1973. Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations. SIAM Rev 15: 423. [Google Scholar]
- Hewish A. 1951. The diffraction of radio waves in passing through a phase-changing ionosphere. Proc Roy Soc A 209: 81–96. https://doi.org/10.1098/rspa.1951.0189. [Google Scholar]
- Hinson D. 1986. Strong scintillations during atmospheric occultations: Theoretical intensity spectra. Radio Sci 21: 257–270. https://doi.org/10.1029/RS021i002p00257. [CrossRef] [Google Scholar]
- Hinson DP. 1984. Magnetic field orientations in Saturn’s upper ionosphere inferred from Voyager radio occultations. J Geophys Res Space Phys 89: 65–73. https://doi.org/10.1029/JA089iA01p00065. [CrossRef] [Google Scholar]
- Hinson DP, Tyler GL. 1982. Spatial irregularities in Jupiter’s upper ionosphere observed by Voyager radio occultations. J Geophys Res Space Phys 87: 5275–5289. https://doi.org/10.1029/JA087iA07p05275. [CrossRef] [Google Scholar]
- Hochegger G, Nava B, Radicella S, Leitinger R. 2000. A family of ionospheric models for different uses. Phys Chem Earth (C) 25: 307–310. https://doi.org/10.1016/S1464-1917(00)00022-2. [CrossRef] [Google Scholar]
- Horvath I, Crozier S. 2007. Software developed for obtaining GPS-derived total electron content values. Radio Sci 42: RS2002. https://doi.org/10.1029/2006RS003452. [Google Scholar]
- Huang CS, de La Beaujardiere O, Roddy PA, Hunton DE, Liu JY, Chen SP. 2014a. Occurrence probability and amplitude of equatorial ionospheric irregularities associated with plasma bubbles during low and moderate solar activities (2008–2012). J Geophys Res Space Phys 119: 1186–1199. https://doi.org/10.1002/2013JA019212. [CrossRef] [Google Scholar]
- Humphreys TE, Psiaki ML, Hinks JC, O’Hanlon B, Kintner PM. 2009. Simulating ionosphere-induced scintillation for testing GPS receiver phase tracking loops. IEEE J Selected Topics Signal Proc 3: 707–715. https://doi.org/10.1109/JSTSP.2009.2024130. [CrossRef] [Google Scholar]
- Hysell DI, Kelley MC, Swartz WE, Pfaff RF, Swenson CM. 1994a. Steepened structures in equatorial spread F: 1. New observations. J Geophys Res 99: 8827–8840. https://doi.org/10.1029/93JA02961. [CrossRef] [Google Scholar]
- Hysell DI, Seyler CE, Kelley MC. 1994b. Steepened structures in equatorial spread F: 2. Theory. J Geophys Res 99: 8841–8850. https://doi.org/10.1029/93JA02960. [CrossRef] [Google Scholar]
- Hysell DL, Kelley MC. 1997. Decaying equatorial F region plasma depletions. J Geophys Res 102: 20007–20017. https://doi.org/10.1029/97JA01725. [CrossRef] [Google Scholar]
- Hysell DL, Shume EB. 2002. Electrostatic plasma turbulence in the topside equatorial F region ionosphere. J Geophys Res 107: SIA1-1–SIA1-12. https://doi.org/10.1029/2001JA000227. [Google Scholar]
- Inhester B, Ulwick JC, Cho J, Kelley MC, Schmidt G. 1990. Consistency of rocket and radar electron density observations: implication about the anisotropy of mesospheric turbulence. J Atm Terr Phys 52: 855–873. https://doi.org/10.1016/0021-9169(90)90021-E. [CrossRef] [Google Scholar]
- Ishimaru A. 1978. Wave propagation and scattering in random media, vol. 2, Academic Press, New York. [Google Scholar]
- Ishimaru A, Kuga Y, Liu J, Kim Y, Freeman T. 1999. Ionospheric effects on synthetic aperture radar at 100 MHz to 2 GHz. Radio Sci 34: 257–268. https://doi.org/10.1029/1998RS900021. [CrossRef] [Google Scholar]
- Iyer KN, Souza JR, Pathan BM, Abdu MA, Jivani MN, Joshi HP. 2006. A model of equatorial and low latitude VHF scintillation in India. Indian J Radio Space Phys 35: 98–104. [Google Scholar]
- Jeruchim MC, Balaban P, Shanmugan KS. 2000. Simulation of communication systems, 2nd edn. Kluwer Academic Publishers, New York. [CrossRef] [Google Scholar]
- Jia P, Cai D, Wang D, Basden A. 2015. Simulation of atmospheric turbulence phase screen for large telescope and optical interferometer. MNRAS 447: 3467–3474. https://doi.org/10.1093/mnras/stu2655. [CrossRef] [Google Scholar]
- Jiao Y, Morton YT. 2015. Comparison of the effect of high-latitude and equatorial ionospheric scintillation on GPS signals during the maximum of solar cycle 24. Radio Sci 50: 886–903. https://doi.org/10.1002/2015RS005719. [CrossRef] [Google Scholar]
- Jin Y, Miloch WJ, Moen JI, Clausen LBN. 2018. Solar cycle and seasonal variations of the GPS phase scintillation at high latitudes. J Space Weather Space Clim 8: A48. https://doi.org/10.1051/swsc/2018034. [CrossRef] [EDP Sciences] [Google Scholar]
- Jin Y, Moen JI, Spicher A, Oksavik K, Miloch WJ, Clausen LBN, Požoga M, Sato Y. 2019. Simultaneous rocket and scintillation observations of plasma irregularities associated with a reversed flow event in the casp ionosphere. Progr Earth Planet Sci 124: 7098–7111. https://doi.org/10.1029/2019JA026942. [Google Scholar]
- Kelley MC, Baker KD, Ulwick JC, Rino CL, Baron MJ. 1980. Simultaneous rocket probe, scintillation, and incoherent scatter radar observations of irregularities in the auroral zone ionosphere. Radio Sci 15: 491–505. https://doi.org/10.1029/RS015i003p00491. [CrossRef] [Google Scholar]
- Kelley MC, Livingston RC, Rino CL, Tsunoda RT. 1982. The vertical wave number spectrum of topside equatorial spread F: Estimates of backscatter levels and implications for a unified theory. J Geophys Res Space Phys 87: 5217–5221. https://doi.org/10.1029/JA087iA07p05217. [CrossRef] [Google Scholar]
- Kelley MC, Makela JJ, Ledvina BM, Kintner PM. 2002. Observations of equatorial spread-F from Haleakala, Hawaii. Geophys Res Lett 29: 64-1–64–4. https://doi.org/10.1029/2002GL015509. [CrossRef] [Google Scholar]
- Kelley MC, Ott E. 1978. Two-dimensional turbulence in equatorial spread F. J Geophys Res Space Phys 83: 4369–4372. https://doi.org/10.1029/JA083iA09p04369. [CrossRef] [Google Scholar]
- Kelly M, Comberiate JM, Miller ES, Paxton LJ. 2014. Progress toward forecasting of space weather effects on UHF SATCOM after Operation Anaconda. Space Weather 12: 601–611. https://doi.org/10.1002/2014SW001081. [CrossRef] [Google Scholar]
- Keskinen MJ, Mitchell HG, Fedder JA, Satyanarayana P, Zalesak ST, Huba JD. 1988. Nonlinear evolution of the Kelvin-Helmholtz instability in the high-latitude ionosphere. J Geophys Res Space Phys 93: 137–152. https://doi.org/10.1029/JA093iA01p00137. [CrossRef] [Google Scholar]
- Keskinen MJ, Ossakow SL, Chaturvedi PK. 1980. Preliminary report of numerical simulations of intermediate wavelength collisional Rayleigh-Taylor instability in equatorial spread F. J Geophys Res 85: 1775–1778. https://doi.org/10.1029/JA085iA04p01775. [CrossRef] [Google Scholar]
- Kintner PM, Seyler CE. 1985. The status of observations and theory of high latitude ionospheric and magnetospheric plasma turbulence. Space Sci Rev 41: 91–129. https://doi.org/10.1007/BF00241347. [CrossRef] [Google Scholar]
- Kivanç Ö, Heelis RA. 1997. Structures in ionospheric number density and velocity associated with polar cap ionization patches. J Geophys Res Space Phys 102: 307–318. https://doi.org/10.1029/96JA03141. [CrossRef] [Google Scholar]
- Knepp DL. 1983. Multiple phase-screen calculation of the temporal behavior of stochastic waves. Proc IEEE 71: 722–737. https://doi.org/10.1109/PROC.1983.12660. [CrossRef] [Google Scholar]
- Knepp DL, Nickisch LJ. 2009. Multiple phase screen calculation of wide bandwidth propagation. Radio Sci 44: RS0A09. https://doi.org/10.1029/2008RS004054. [Google Scholar]
- Knight M, Finn A. 1998. The effects of ionospheric scintillations on GPS. In: Proceedings of the 11th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1998), Nashville, TN. pp. 673–685. [Google Scholar]
- Kolmogorov AN. 1941. The local structure of turbulence in incompressible viscous fluid for very large Raynolds numbers. Dokl Akad Nauk SSSR 30: 299. https://doi.org/10.1098/rspa.1991.0075. [Google Scholar]
- Kovasznay LSG, Uberoi MS, Corrsin S. 1949. The transformation between one- and three-dimensional power spectra for an isotropic scalar fluctuation field. Phys Rev 76: 1263. https://doi.org/10.1103/PhysRev.76.1263.2. [CrossRef] [Google Scholar]
- Krane B, Pécseli HL, Trulsen J, Primdahl F. 2000. Spectral properties of low-frequency electrostatic waves in the ionospheric E region. J Geophys Res 105: 10585–10601. https://doi.org/10.1029/1999JA900503. [CrossRef] [Google Scholar]
- Kravtsov YA. 1992. Propagation of electromagnetic waves through a turbulent atmosphere. Rep Prog Phys 55: 39–112. https://doi.org/10.1088/0034-4885/55/1/002. [CrossRef] [Google Scholar]
- Kriegel M, Jakowski N, Berdermann J, Sato H, Mogese WM. 2017. Scintillation measurements at Bahir Dar during the high solar activity phase of solar cycle 24. Ann Geophys 35(1): 97–106. https://doi.org/10.5194/angeo-35-97-2017. [CrossRef] [Google Scholar]
- Lane RG, Glindemann A, Dainty JC. 1992. Simulation of a Kolmogorov phase screen. Waves in Random Media 2: 209–224. https://doi.org/10.1088/0959-7174/2/3/003. [CrossRef] [Google Scholar]
- Leitinger R. 2001. Modern aspects of ionospheric propagation research. In: Eleventh International Conference on Antennas and Propagation (IEE Conf. Publ. No. 480). pp. 677–681. https://doi.org/10.1049/cp:20010376. [Google Scholar]
- Liu CH, Wernik AW, Yeh KC, Youakim MY. 1974. Effects of multiple scattering on scintillation of transionospheric radio signals. Radio Sci 9: 599–607. https://doi.org/10.1029/RS009i006p00599. [CrossRef] [Google Scholar]
- Liu CH, Yeh KC. 1978. Pulse propagation in random media. IEEE Trans Antennas Propagat AP-26: 561–566. https://doi.org/10.1109/TAP.1978.1141888. [Google Scholar]
- Liu Y-H, Liu C-H, Su S-Y. 2012. Global and seasonal scintillation morphology in the equatorial region derived from ROCSAT-1 in-situ data. Terr Atmos Ocean Sci 23: 95–106. https://doi.org/10.3319/TAO.2011.06.30.01(AA). [CrossRef] [Google Scholar]
- Ludwig-Barbosa V, Rasch J, Carlstöm A, Pettersson MI, Vu VT. 2020. GNSS radio occultation simulation using multiple phase screen orbit sampling. IEEE Geosci Remote Sensing Lett 17: 1323–1327. https://doi.org/10.1109/LGRS.2019.2944537. [CrossRef] [Google Scholar]
- Mahan AI. 1962. Astronomical refraction – some history and theories. Appl Opt 1: 497–511. https://doi.org/10.1364/AO.1.000497. [CrossRef] [Google Scholar]
- Makridakis S, Spiliotis E, Assimakopoulos V. 2018. Statistical and Machine Learning forecasting methods: Concerns and ways forward. PLoS One 13(e0194): 889. https://doi.org/10.1371/journal.pone.0194889. [Google Scholar]
- Mannix CR, Belcher DP, Cannon PS. 2017. Measurement of ionospheric scintillation parameters from SAR images using corner reflectors. IEEE Trans Geosci Remote Sens 55: 6695–6702. https://doi.org/10.1109/TGRS.2017.2727319. [CrossRef] [Google Scholar]
- McDonald BE, Coffey TP, Ossakow S, Sudan RN. 1974. Preliminary report of numerical simulation of Type 2 irregularities in the equatorial electrojet. J Geophys Res 79: 2551–2554. https://doi.org/10.1029/JA079i016p02551. [CrossRef] [Google Scholar]
- McGranaghan RM, Mannucci AJ, Wilson B, Mattmann CA, Chadwick R. 2018. New capabilities for prediction of high-latitude ionospheric scintillation: A novel approach with machine learning. Space Weather 16: 1817–1846. https://doi.org/10.1029/2018SW002018. [Google Scholar]
- Mercier RP. 1962. Diffraction by a screen causing large random phase fluctuations. Proc Camb Phil Soc A 58: 382–400. https://doi.org/10.1017/S0305004100036586. [CrossRef] [Google Scholar]
- Mikkelsen T, Pécseli HL. 1980. Strong turbulence in partially ionized plasmas. Phys Lett A 77: 159–162. https://doi.org/10.1016/0375-9601(80)90179-6. [CrossRef] [Google Scholar]
- Moorcroft DR, Arima KS. 1972. The shape of the F-region irregularities which produce satellite scintillations – Evidence for axial asymmetry. J Atm Terr Phys 34: 437–450. https://doi.org/10.1016/0021-9169(72)90045-1. [CrossRef] [Google Scholar]
- Moorthy KK, Reddi CR, Murthy BK. 1979. Night-time ionospheric scintillations at the magnetic equator. J Atm Terr Phys 41: 123–134. https://doi.org/10.1016/0021-9169(79)90004-7. [CrossRef] [Google Scholar]
- Muella MTAH, de Paula ER, Monteiro AA. 2013. Ionospheric scintillation and dynamics of Fresnel-scale irregularities in the inner region of the equatorial ionization anomaly. Surv Geophys 34: 233–251. https://doi.org/10.1007/s10712-012-9212-0. [CrossRef] [Google Scholar]
- Muralikrishna P, Vieira LP, Abdu MA. 2007. Spectral features of E- and F-region plasma irregularities as observed by rocket-borne electron density probes from Brazil. Rev Bras Geof 25: 115–128. https://doi.org/10.1590/S0102-261X2007000600014. [Google Scholar]
- Nava B, Coisson P, Radicella SM. 2008. A new version of the NeQuick ionosphere electron density model. J Atm Sol Terr Phys 70: 1856–1862. https://doi.org/10.1016/j.jastp.2008.01.015. [CrossRef] [Google Scholar]
- Nugent LD, Elvidge S, Angling MJ. 2021. Comparison of low-latitude ionospheric scintillation forecasting techniques using a physics-based model. Space Weather 19: e2020SW002 462. https://doi.org/10.1029/2020SW002462. [CrossRef] [Google Scholar]
- Obukhov AM. 1949. Structure of the temperature field in turbulent stream. Izv Akad Nauk SSSR, Geogr Geofiz 13: 58–69. [Google Scholar]
- Obukhov AM. 1953. Effect of weak inhomogeneities in the atmosphere on sound and light propagation. Izv Akad Nauk SSSR Ser Geophys 2: 155–165. [Google Scholar]
- Papoulis A, Pillai S. 2002. Probability, random variables and stochastic processes. McGraw-Hill, New York. [Google Scholar]
- Parkin IA. 1967. The effects of field-aligned ionospheric irregularities on satellite scintillations. J Atm Terr Phys 30: 1135–1142. https://doi.org/10.1016/S0021-9169(68)80003-0. [Google Scholar]
- Patel K, Singh AK, Patel RP, Singh RP. 2009. Characteristics of low latitude ionospheric E-region irregularities linked with daytime VHF scintillations measured from Varanasi. J Earth Syst Sci 118: 721–732. https://doi.org/10.1007/s12040-009-0058-x. [CrossRef] [Google Scholar]
- Prakash S, Gupta SP, Subbaraya BH, Jain CL. 1971a. Electrostatic plasma instabilities in the equatorial electrojet. Nature 233: 56–58. https://doi.org/10.1038/physci233056a0. [CrossRef] [Google Scholar]
- Prakash S, Subbaraya BH, Gupta SP. 1971b. Rocket measurements of ionization irregularities in the equatorial ionosphere at Thumba and identification of plasma instabilities. Indian J Radio Space Phys 1: 72–80. [Google Scholar]
- Priyadarshi S. 2015. A review of ionospheric scintillation models. Surv Geophys 36: 295–324. https://doi.org/10.1007/s10712-015-9319-1. [CrossRef] [Google Scholar]
- Prokhorov AM, Bunkin FV, Gochelashvily KS, Shishov VI. 1975. Laser irradiance propgataion in turbulent media. Proc IEEE 63: 790–811. https://doi.org/10.1109/PROC.1975.9828. [CrossRef] [Google Scholar]
- Qi M, Zhang GP. 2008. Trend time-series modeling and forecasting with neural networks. IEE Trans Neural Netw 19: 808–816. https://doi.org/10.1109/TNN.2007.912308. [CrossRef] [Google Scholar]
- Ratcliffe JA. 1956. Some aspects of diffraction theory and their application to the ionosphere. Rep Prog Phys 19: 188–267. https://doi.org/10.1088/0034-4885/19/1/306. [CrossRef] [Google Scholar]
- Rawer K. 1993. Wave propagation in the ionosphere. Kluwer Academic Publishers, Dordrecht. [CrossRef] [Google Scholar]
- Redmon RJ, Anderson D, Caton R, Bullett T. 2010. A forecasting ionospheric real-time scintillation tool (FIRST). Space Weather 8(S12): 003. https://doi.org/10.1029/2010SW000582. [Google Scholar]
- Retterer JM. 2010. Forecasting low-latitude radio scintillation with 3-D ionospheric plume models: 2. Scintillation calculation. J Geophys Res 115(A03): 307. https://doi.org/10.1029/2008JA013840. [Google Scholar]
- Rezende LFC, de Paula ER, Stephany S, Kantor IJ, Muella MTAH, de Siqueira PM, Correa KS. 2010. Survey and prediction of the ionospheric scintillation using data mining techniques. Space Weather 8: S06D09. https://doi.org/10.1029/2009SW000532. [Google Scholar]
- Rice SO. 1944. Mathematical analysis of random noise. Bell Sys Tech J 23: 282–332. https://doi.org/10.1002/j.1538-7305.1944.tb00874.x. [CrossRef] [Google Scholar]
- Rice SO. 1945. Mathematical analysis of random noise. Bell Sys Tech J 24: 46–156. https://doi.org/10.1002/j.1538-7305.1945.tb00453.x. [CrossRef] [Google Scholar]
- Rickett B. 1977. Interstellar scattering and scintillation of radio waves. Ann Rev Astrophys 15: 479–504. https://doi.org/10.1146/annurev.aa.15.090177.002403. [CrossRef] [Google Scholar]
- Rino C, Breitsch B, Morton Y, Jiao Y, Xu D, Carrano C. 2018. A compact multi-frequency GNSS scintillation model. Navigation 65: 563–569. https://doi.org/10.1002/navi.263. [CrossRef] [Google Scholar]
- Rino CL. 1979a. A power law phase screen model for ionospheric scintillation: 1. Weak scatter. Radio Sci 14: 1135–1145. https://doi.org/10.1029/RS014i006p01135. [CrossRef] [Google Scholar]
- Rino CL. 1979b. A power law phase screen model for ionospheric scintillation: 2. Strong scatter. Radio Sci 14: 1147–1155. https://doi.org/10.1029/RS014i006p01147. [CrossRef] [Google Scholar]
- Rino CL. 1982a. On the application of phase screen models to the interpretation of ionospheric scintillation data. Radio Sci 17: 855–867. https://doi.org/10.1029/RS017i004p00855. [CrossRef] [Google Scholar]
- Rino CL. 2011. The theory of scintillation with applications in remote sensing. Wiley, New Jersey. [CrossRef] [Google Scholar]
- Rino CL, Fremouw EJ. 1977. The angle dependence of singly scattered wavefields. J Atm Terr Phys 39: 859–868. https://doi.org/10.1016/0021-9169(77)90166-0. [CrossRef] [Google Scholar]
- Rino CL, Tsunoda RT, Petriceks J, Livingston RC, Kelley MC, Baker KD. 1981. Simultaneous rocket-borne beacon and in situ measurements of equatorial spread F – Intermediate wavelength results. J Geophys Res 86: 2411–2420. https://doi.org/10.1029/JA086iA04p02411. [CrossRef] [Google Scholar]
- Roddier NA. 1990. Atmospheric wavefront simulation using Zernike polynomials. Opt Eng 29: 1174–1180. https://doi.org/10.1117/12.55712. [CrossRef] [Google Scholar]
- Rogers NC, Quegan S, Kim JS, Papathanassiou KP. 2014. Impacts of ionospheric scintillation on the BIOMASS P-band satellite SAR. IEEE Trans Geosci Remote Sens 52: 1856–1868. https://doi.org/10.1109/TGRS.2013.2255880. [CrossRef] [Google Scholar]
- Rufenach C. 1972. Power-law wavenumber spectrum deduced from ionospheric scintillation observations. J Geophys Res 77: 4761–4772. https://doi.org/10.1029/JA077i025p04761. [CrossRef] [Google Scholar]
- Rumsey VH. 1975. Scintillations due to a concentrated layer with a power-law turbulence spectrum. Radio Sci 10: 107–114. https://doi.org/10.1029/RS010i001p00107. [CrossRef] [Google Scholar]
- Sato H, Kim JS, Otsuka Y, Wrasse CM, de Paula ER, de Souza JR. 2021. L-band synthetic aperture radar observation of ionospheric density irregularities at equatorial plasma depletion region. Geophys Res Lett 48: e2021GL093 541. https://doi.org/10.1029/2021GL093541. [Google Scholar]
- Schmidt J. 2010. Numerical simulation of optical wave propagation with examples in MATLAB. SPIE Press, Bellingham. [CrossRef] [Google Scholar]
- Secan JA, Bussey RM, Fremouw EJ, Basu S. 1995. An improved model of equatorial scintillation. Radio Sci 30: 607–617. https://doi.org/10.1029/94RS03172. [CrossRef] [Google Scholar]
- Secan JA, Bussey RM, Fremouw EJ, Basu S. 1997. High-latitude upgrade to the Wideband ionospheric scintillation model. Radio Sci 32: 1567–1574. https://doi.org/10.1029/97RS00453. [CrossRef] [Google Scholar]
- Shishov VI. 1968. Theory of wave propagation in random media. Radiophys Quant Electr 11: 500–505. https://doi.org/10.1007/BF01033362. [CrossRef] [Google Scholar]
- Shishov VI. 1974. Dependence of the form of the scintillation spectrum on the form of the spectrum of refractive-index inhomogeneities. Communication I. A phase screen. Radiophys Quantum Electron 17: 1287–1292. https://doi.org/10.1007/BF01042029. [CrossRef] [Google Scholar]
- Shishov VI. 1976. Scintillation spectrum as a function of the spectrum of refractive-index irregularities II. Statistically homogeneous medium. Radiophys Quantum Electron 19: 62–68. https://doi.org/10.1007/BF01038410. [CrossRef] [Google Scholar]
- Shishov VI, Tyulbashev SA, Chashei IV, Subaev IA, Lapaev KA. 2010. Interplanetary and ionosphere scintillation monitoring of radio sources ensemble at the solar activity minimum. Solar Phys 265: 277–291. https://doi.org/10.1007/s11207-010-9565-9. [CrossRef] [Google Scholar]
- Shkarofsky IP. 1968. Generalized turbulence space-correlation and wave-number spectrum-function pairs. Can J Phys 46: 2133–2153. https://doi.org/10.1139/p68-562. [CrossRef] [Google Scholar]
- Siefring CL, Bernhardt PA, Koch DE, Galysh IJ. 2011. Using TEC and radio scintillation data from the CITRIS radio beacon receiver to study low and midlatitude ionospheric irregularities. Radio Sci 46: RS0D19. https://doi.org/10.1029/2010RS004585. [CrossRef] [Google Scholar]
- Singleton DG. 1970a. The effect of irregularity shape on radio star and satellite scintillations. J Atm Terr Phys 32: 315–343. https://doi.org/10.1016/0021-9169(70)90005-X. [CrossRef] [Google Scholar]
- Singleton DG. 1970b. Dependence of satellite scintillations on zenith angle and azimuth. J Atm Terr Phys 32: 789–803. https://doi.org/10.1016/0021-9169(70)90029-2. [CrossRef] [Google Scholar]
- Singleton DG. 1973. The dependence of high-latitude ionospheric scintillations on zenith angle and azimuth. J Atm Terr Phys 35: 2253–2265. https://doi.org/10.1016/0021-9169(73)90141-4. [CrossRef] [Google Scholar]
- Singleton DG. 1974. Power spectra of ionospheric scintillations. J Atm Terr Phys 36: 113–133. https://doi.org/10.1016/0021-9169(74)90071-3. [CrossRef] [Google Scholar]
- Snyder R, Koehler A, Ord J. 2002. Forecasting for inventory control with exponential smoothing. Int J Forecast 18: 5–18. https://doi.org/10.1016/S0169-2070(01)00109-1. [CrossRef] [Google Scholar]
- Sokolovskiy SV. 2000. Inversion of radio occulatation amplitude data. Radio Sci 35: 97–105. https://doi.org/10.1029/1999RS002203. [CrossRef] [Google Scholar]
- Souto Fortes LP, Lin T, Lachapelle G. 2015. Effects of the 2012–2013 solar maximum on GNSS signals in Brazil. GPS Solut 19: 309–319. https://doi.org/10.1007/s10291-014-0389-1. [CrossRef] [Google Scholar]
- Spicher A, Miloch WJ, Clausen LBN, Moen JI. 2015. Plasma turbulence and coherent structures in the polar cap observed by the ICI-2 sounding rocket. J Geophys Res Space Phys 120: 10959–10978. https://doi.org/10.1002/2015JA021634. [CrossRef] [Google Scholar]
- Spogli L, Alfonsi L, Franceschi GD, Romano V, Aquino MHO, Dodson A. 2009. Climatology of GPS ionospheric scintillations over high andmid-latitude European regions. Ann Geophys 27: 3429–3437. https://doi.org/10.5194/angeo-27-3429-2009. [CrossRef] [Google Scholar]
- Sreeja V, Aquino M, Elmas ZG. 2011. Impact of ionospheric scintillation on GNSS receiver tracking performance over Latin America: Introducing the concept of tracking jitter variance maps. Space Weather 9(S10): 002. https://doi.org/10.1029/2011SW000707. [CrossRef] [Google Scholar]
- Strangeways HJ, Zernov NN, Gherm VE. 2013. Comparison of four methods for transionospheric scintillation evaluation. Radio Sci 49: 899–909. https://doi.org/10.1002/2014RS005408. [CrossRef] [Google Scholar]
- Strom R, Bo P, Walker M, Rendong N, eds. 2001. Sources and scintillations: Refraction and scattering in radio astronomy IAU Colloquium 182. Springer Science + Business Media, Dordrecht. https://doi.org/10.1007/978-94-010-1001-6. [Google Scholar]
- Tappert FD, Hardin RH. 1975. Computer simulation of long-range ocean acoustic propagation using the parabolic equation method. In: Eight international congress on acoustics, London, 1974, vol. 2, Goldcrest Press, Trowbridge. p. 452. [Google Scholar]
- Tatarski VI. 2016. Wave propagation in a turbulent medium. Dover, New York. [Google Scholar]
- Tatarskii VI. 1971. The effects of the turbulent atmosphere on wave propagation. Israel Program for Scientific Translations, Jerusalem. [Google Scholar]
- Tatarskii VI, Charnotskii MI, Gozani J, Zavorotny VU. 1992. Path integral approach to wave propagation in a random media. Part I: derivations and various formulations. In: Wave propagation in random media (Scintillation). Tatarskii VI, Ishimaru A, Zavorotny VU, (Eds.) SPIE Press, Bellingham. pp. 383–402. [Google Scholar]
- Taylor GI. 1938. The spectrum of turbulence. Proc Royal Soc A 164: 476–490. https://doi.org/10.1098/rspa.1938.0032. [Google Scholar]
- Tennekes H. 1975. Eulerian and Lagrangian time microscales in isotropic turbulence. J Fluid Mech 67: 561–567. https://doi.org/10.1017/S0022112075000468. [CrossRef] [Google Scholar]
- Tsai L-C, Su S-Y, Liu C-H. 2017. Global morphology of ionospheric F-layer scintillationsusing FS3/COSMIC GPS radio occultation data. GPS Solu 21: 1037–1048. https://doi.org/10.1007/s10291-016-0591-4. [CrossRef] [Google Scholar]
- Umeki R, Liu CH, Yeh KC. 1977. Multifrequency spectra of ionospheric amplitude scintillations. Space Phys 82: 2752–2760. https://doi.org/10.1029/JA082i019p02752. [Google Scholar]
- Uscinski BJ. 1978. Use of physical concepts in delaing with problems of multiple scatter. J Atm Terr Phys 40: 1257–1266. https://doi.org/10.1016/0021-9169(78)90076-4. [CrossRef] [Google Scholar]
- Uscinski BJ. 1982. Intensity fluctuations in a multiple scattering medium. Solution of the fourth moment equation. Proc R Soc Lond A 380: 137–169. https://doi.org/10.1098/rspa.1982.0034. [CrossRef] [Google Scholar]
- Uscinski BJ. 1985. Analytical solution of the fourth-moment equation and interpretation as a set of phase screens. J Opt Soc Am A 2: 2077–2091. https://doi.org/10.1364/JOSAA.2.002077. [CrossRef] [Google Scholar]
- van de Kamp M, Cannon PS, Terkildsen M. 2009. Effect of the ionosphere on defocusing of space-based radars. Radio Sci 44: RS1003. https://doi.org/10.1029/2007RS003808. [Google Scholar]
- Voitsekhovich VV. 1995. Outer scale of turbulence: comparison of different models. J Opt Soc Am A 12: 1346–1353. https://doi.org/10.1364/JOSAA.12.001346. [CrossRef] [Google Scholar]
- Wand RH, Evans JV. 1975. Morphology of ionospheric scintillation in the auroral zone. In: Goodman J, (Ed.). Effect of the Ionosphere on Space Systems and Communication, NTIS CSCL 04/1 N75-30714. pp. 76–83. [Google Scholar]
- Weinstock J, Sleeper A. 1972. Nonlinear saturation of “Type I” irregularities in the equatorial electrojet. J Geophys Res 77: 3621–3624. https://doi.org/10.1029/JA077i019p03621. [CrossRef] [Google Scholar]
- Weisbrod S, Anderson LJ. 1959. Simple methods for computing tropospheric and ionospheric refractive effects on radio waves. Proc IRE 47: 1770–1777. https://doi.org/10.1109/JRPROC.1959.287112. [CrossRef] [Google Scholar]
- Wernik AW, Alfonsi L, Materassi M. 2007. Scintillation modeling using in situ data. Radio Sci 42: RS1002. https://doi.org/10.1029/2006RS003512. [Google Scholar]
- Wheelon AD. 2003. Electromagnetic scintillation II. Weak scattering. Cambridge University Press, Cambridge. [CrossRef] [Google Scholar]
- Wheelon AD. 2004. Electromagnetic scintillation I. Geometrical optics. Cambridge University Press, Cambridge. [Google Scholar]
- Yakushkin IG. 1975. Asymptotic calculation of field-intensity fluctuations in a turbulent medium for long paths. Radiophys Quant Electron 18: 1224–1229. https://doi.org/10.1007/BF01037115. [CrossRef] [Google Scholar]
- Yeh KC, Liu C-H. 1982. Radio wave scintillations in the ionosphere. Proc IEEE 70: 324–360. https://doi.org/10.1109/PROC.1982.12313. [CrossRef] [Google Scholar]
- Yokoyama T. 2017b. A review on the numerical simulation of equatorial plasma bubbles toward scintillation evaluation and forecasting. Prog Earth Planet Sci 4: 37. https://doi.org/10.1186/s40645-017-0153-6. [CrossRef] [Google Scholar]
- Yokoyama T, Stolle C. 2017. Low and midlatitude ionospheric plasma density irregularities and their effects on geomagnetic field. Space Sci Rev 206: 495–519. https://doi.org/10.1007/s11214-016-0295-7. [CrossRef] [Google Scholar]
- Young MA, Oppenheim MM, Dimant YS. 2020. The Farley-Buneman spectrum in 2-D and 3-D Particle-in-Cell simulations. J Geophys Res Space Phys 125: e2019JA027 326. https://doi.org/10.1029/2019JA027326. [CrossRef] [Google Scholar]
- Zavorotny VU, Charnotskii MI, Gozani J, Tatarskii VI. 1992. Path integral approach to wave propagation in a random media. Part II: exact formulations and heuristic approximations. In: Wave propagation in random media (Scintillation). Tatarskii VI, Ishimaru A, Zavorotny VU, (Eds.) SPIE Press, Bellingham. pp. 403–421. [Google Scholar]
- Zhai H, Wang B, Zhang J, Dang A. 2015. Fractal phase screen generation algorithm for atmospheric turbulence. Appl Opt 54: 4023–4032. https://doi.org/10.1364/AO.54.004023. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.