Issue |
J. Space Weather Space Clim.
Volume 12, 2022
Topical Issue - Ionospheric plasma irregularities and their impact on radio systems
|
|
---|---|---|
Article Number | 23 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/swsc/2022022 | |
Published online | 28 June 2022 |
- Aa E, Zhang D, Ridley AJ, Xiao Z, Hao Y. 2012. A global model: Empirical orthogonal function analysis of total electron content 1999–2009 data. J Geophys Res (Space Phys) 117(A3). https://doi.org/10.1029/2011JA017238. [Google Scholar]
- Aa E, Zhang DH, Xiao Z, Hao YQ, Ridley AJ, Moldwin M. 2011. Modeling ionospheric foF2 by using empirical orthogonal function analysis. Ann Geophys 29(8): 1501–1515. https://doi.org/10.5194/angeo-29-1501-2011. [CrossRef] [Google Scholar]
- Alfonsi L, Spogli L, De Franceschi G, Romano V, Aquino M, Dodson A, Mitchell CN. 2011. Bipolar climatology of GPS ionospheric scintillation at solar minimum. Radio Sci 46: Rs0d05. https://doi.org/10.1029/2010rs004571. [Google Scholar]
- Basu S, Basu S, Mackenzie E, Whitney HE. 1985. Morphology of phase and intensity scintillations in the auroral oval and polar-cap. Radio Sci 20(3): 347–356. https://doi.org/10.1029/RS020i003p00347. [CrossRef] [Google Scholar]
- Basu S, Groves KM, Basu S, Sultan PJ. 2002. Specification and forecasting of scintillations in communication/navigation links: Current status and future plans. J Atmos Sol Terr Phys 64(16): 1745–1754. https://doi.org/10.1016/s1364-6826(02)00124-4. [CrossRef] [Google Scholar]
- Basu S, Groves KM, Quinn JM, Doherty P. 1999. A comparison of TEC fluctuations and scintillations at Ascension Island. J Atmos Sol Terr Phys 61(16): 1219–1226. https://doi.org/10.1016/S1364-6826(99)00052-8. [CrossRef] [Google Scholar]
- Bilitza D, McKinnell L-A, Reinisch B, Fuller-Rowell T. 2011. The international reference ionosphere today and in the future. J Geod 85(12): 909–920. https://doi.org/10.1007/s00190-010-0427-x. [CrossRef] [Google Scholar]
- Bishop G, Mazzella A, Holland E. 1995. Using the lonosphere for BPS Measurement Error Control. In: Proceedings of the 8th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1995), Palm Springs, CA, September, pp. 1091–1100. https://www.ion.org/publications/abstract.cfm?articleID=2343. [Google Scholar]
- Borovsky JE, Shprits YY. 2017. Is the Dst index sufficient to define all geospace storms? J Geophys Res (Space Phys) 122(11): 11543–11547. https://doi.org/10.1002/2017JA024679. [Google Scholar]
- Buonsanto MJ. 1999. Ionospheric storms – a review. Space Sci Rev 88(3): 563–601. https://doi.org/10.1023/A:1005107532631. [CrossRef] [Google Scholar]
- Cherniak I, Krankowski A, Zakharenkova I. 2014. Observation of the ionospheric irregularities over the Northern Hemisphere: Methodology and service. Radio Sci 49(8): 653–662. https://doi.org/10.1002/2014RS005433. [CrossRef] [Google Scholar]
- Cherniak I, Krankowski A, Zakharenkova I. 2018. ROTI Maps: A new IGS ionospheric product characterizing the ionospheric irregularities occurrence. GPS Solut 22(3): 69. https://doi.org/10.1007/s10291-018-0730-1. [CrossRef] [Google Scholar]
- Conker RS, El-Arini MB, Hegarty CJ, Hsiao T. 2003. Modeling the effects of ionospheric scintillation on GPS/Satellite-Based Augmentation System availability. Radio Science 38(1): 1001. https://doi.org/10.1029/2000RS002604. [Google Scholar]
- Couzens DA, King JH. 1986. Interplanetary medium data book. Supplement 3: 1977-1985 (Rep. NSSDC/WDC-A/R&S, 86-04). NASA, Greenbelt, MD. [Google Scholar]
- De Franceschi G, Spogli L, Alfonsi L, Romano V, Cesaroni C, Hunstad I. 2019. The ionospheric irregularities climatology over Svalbard from solar cycle 23. Sci Rep 9: 9232. https://doi.org/10.1038/s41598-019-44829-5. [CrossRef] [Google Scholar]
- Dvinskikh NI, Naidenova NI. 1991. An adaptable regional empirical ionospheric model. Adv Space Res 11: 7. https://doi.org/10.1016/0273-1177(91)90312-8. [CrossRef] [Google Scholar]
- Emmert JT, Richmond AD, Drob DP. 2010. A computationally compact representation of magnetic-apex and quasi-dipole coordinates with smooth base vectors. J Geophys Res (Space Phys) 115: A8. https://doi.org/10.1029/2010ja015326. [Google Scholar]
- Forte B. 2005. Optimum detrending of raw GPS data for scintillation measurements at auroral latitudes. J Atmos Sol Terr Phys 67(12): 1100–1109. https://doi.org/10.1016/j.jastp.2005.01.011. [CrossRef] [Google Scholar]
- Foster JC, Coster AJ, Erickson PJ, Holt JM, Lind FD, et al. 2005. Multiradar observations of the polar tongue of ionization. J Geophys Res (Space Phys) 110: A9. https://doi.org/10.1029/2004ja010928. [Google Scholar]
- Holzworth RH, Meng CI. 1975. Mathematical representation of auroral oval. Geophys Res Lett 2(9): 377–380. https://doi.org/10.1029/GL002i009p00377. [CrossRef] [Google Scholar]
- Ivarsen MF, Jin Y, Spicher A, Clausen LB. 2019. Direct evidence for the dissipation of small-scale ionospheric plasma structures by a conductive E region. J Geophys Res (Space Phys) 124(4): 2935–2942. https://doi.org/10.1029/2019JA026500. [Google Scholar]
- Jacobsen KS. 2014. The impact of different sampling rates and calculation time intervals on ROTI values. J Space Weather Space Clim 4: A33. https://doi.org/10.1051/swsc/2014031. [CrossRef] [EDP Sciences] [Google Scholar]
- Jacobsen KS, Dahnn M. 2014. Statistics of ionospheric disturbances and their correlation with GNSS positioning errors at high latitudes. J Space Weather Space Clim 4: A27. https://doi.org/10.1051/swsc/2014024. [CrossRef] [EDP Sciences] [Google Scholar]
- Jakowski N, Beniguel Y, De Franceschi G, Pajares MH, Jacobsen KS, et al. 2012. Monitoring, tracking and forecasting ionospheric perturbations using GNSS techniques. J Space Weather Space Clim 2: 14. https://doi.org/10.1051/swsc/2012022. [Google Scholar]
- Jin Y, Xiong C. 2020. Interhemispheric Asymmetry of Large-Scale Electron Density Gradients in the Polar Cap Ionosphere: UT and Seasonal Variations. J Geophys Res (Space Phys) 125(2): e2019JA027601. https://doi.org/10.1029/2019ja027601. [Google Scholar]
- Jin YQ, Miloch WJ, Moen JI, Clausen LBN. 2018. Solar cycle and seasonal variations of the GPS phase scintillation at high latitudes. J Space Weather Space Clim 8: A48. https://doi.org/10.1051/swsc/2018034. [CrossRef] [EDP Sciences] [Google Scholar]
- Jin YQ, Moen JI, Miloch WJ. 2014. GPS scintillation effects associated with polar cap patches and substorm auroral activity: direct comparison. J Space Weather Space Clim 4: A23. https://doi.org/10.1051/swsc/2014019. [CrossRef] [EDP Sciences] [Google Scholar]
- Jin YQ, Moen JI, Miloch WJ, Clausen LBN, Oksavik K. 2016. Statistical study of the GNSS phase scintillation associated with two types of auroral blobs. J Geophys Res (Space Phys) 121(5): 4679–4697. https://doi.org/10.1002/2016ja022613. [CrossRef] [Google Scholar]
- Jin YQ, Moen JI, Oksavik K, Spicher A, Clausen LBN, Miloch WJ. 2017. GPS scintillations associated with cusp dynamics and polar cap patches. J Space Weather Space Clim 7: A23. https://doi.org/10.1051/swsc/2017022. [CrossRef] [EDP Sciences] [Google Scholar]
- Jin YQ, Spicher A, Xiong C, Clausen LBN, Kervalishvili G, Stolle C, Miloch WJ. 2019. Ionospheric plasma irregularities characterized by the swarm satellites: statistics at high latitudes. J Geophys Res (Space Phys) 124(2): 1262–1282. https://doi.org/10.1029/2018ja026063. [CrossRef] [Google Scholar]
- Kelley MC, Vickrey JF, Carlson CW, Torbert R. 1982. On the origin and spatial extent of high-latitude F-region irregularities. J Geophys Res (Space Phys) 87(Na6): 4469–4475. https://doi.org/10.1029/JA087iA06p04469. [CrossRef] [Google Scholar]
- King JH, Papitashvili NE. 2005. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J Geophys Res (Space Phys) 110: A2. https://doi.org/10.1029/2004ja010649. [Google Scholar]
- Kintner PM, Ledvina BM, De Paula ER. 2007. GPS and ionospheric scintillations. Space Weather 5: S09003. https://doi.org/10.1029/2006sw000260. [Google Scholar]
- Kotulak K, Zakharenkova I, Krankowski A, Cherniak I, Wang N, Fron A. 2020. Climatology characteristics of ionospheric irregularities described with GNSS ROTI. Remote Sens 12(16): 2634. https://doi.org/10.3390/rs12162634. [CrossRef] [Google Scholar]
- Li GZ, Ning BQ, Ren ZP, Hu LH. 2010. Statistics of GPS ionospheric scintillation and irregularities over polar regions at solar minimum. GPS Solut 14(4): 331–341. https://doi.org/10.1007/s10291-009-0156-x. [CrossRef] [Google Scholar]
- Liu L, Wan W, Chen Y, Le H. 2011. Solar activity effects of the ionosphere: A brief review. Chin Sci Bull 56(12): 1202–1211. https://doi.org/10.1007/s11434-010-4226-9. [CrossRef] [Google Scholar]
- Lockwood M, Owens MJ, Barnard LA, Scott CJ, Watt CE. 2017. Space climate and space weather over the past 400 years: 1. The power input to the magnetosphere. J Space Weather Space Clim 7: A19. https://doi.org/10.1051/swsc/2017019. [Google Scholar]
- Lockwood M, Owens MJ, Barnard LA, Scott CJ, Watt CE, Bentley S. 2018. Space climate and space weather over the past 400 years: 2. Proxy indicators of geomagnetic storm and substorm occurrence. J Space Weather Space Clim 8: A12. https://doi.org/10.1051/swsc/2017048. [CrossRef] [EDP Sciences] [Google Scholar]
- Lorenz EN. 1956. Empirical orthogonal functions and statistical weather prediction. Massachusetts Institute of Technology, Department of Meteorology, Cambridge. [Google Scholar]
- Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF. 1998. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3): 565–582. https://doi.org/10.1029/97rs02707. [CrossRef] [Google Scholar]
- McGranaghan RM, Mannucci AJ, Wilson B, Mattmann CA, Chadwick R. 2018. New capabilities for prediction of high-latitude ionospheric scintillation: A novel approach with machine learning. Space Weather 16(11): 1817–1846. https://doi.org/10.1029/2018SW002018. [Google Scholar]
- Meziane K, Kashcheyev A, Jayachandran PT, Hamza AM. 2020a. On the latitude-dependence of the GPS phase variation index in the polar region. In: 2020 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), pp. 72–77. https://doi.org/10.1109/WiSEE44079.2020.9262655. [CrossRef] [Google Scholar]
- Meziane K, Kashcheyev A, Jayachandran PT, Hamza AM. 2021. A Bayesian inference-based empirical model for scintillation indices for high-latitude. Space Weather 19(6): e2020SW002710. https://doi.org/10.1029/2020SW002710. [CrossRef] [Google Scholar]
- Meziane K, Kashcheyev A, Patra S, Jayachandran PT, Hamza AM. 2020b. Solar cycle variations of GPS amplitude scintillation for the polar region. Space Weather 18(8): e2019SW002434. https://doi.org/10.1029/2019SW002434. [CrossRef] [Google Scholar]
- Moen J, Oksavik K, Alfonsi L, Daabakk Y, Romano V, Spogli L. 2013. Space weather challenges of the polar cap ionosphere. J Space Weather Space Clim 3: A8. https://doi.org/10.1051/swsc/2013025. [Google Scholar]
- Newell PT, Sotirelis T, Liou K, Meng CI, Rich FJ. 2007. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J Geophys Res (Space Phys) 112: A1. https://doi.org/10.1029/2006ja012015. [Google Scholar]
- Pi X, Mannucci AJ, Lindqwister UJ, Ho CM. 1997. Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys Res Lett 24(18): 2283–2286. https://doi.org/10.1029/97gl02273. [CrossRef] [Google Scholar]
- Prikryl P, Jayachandran PT, Chadwick R, Kelly TD. 2015. Climatology of GPS phase scintillation at northern high latitudes for the period from 2008 to 2013. Ann Geophys 33(5): 531–545. https://doi.org/10.5194/angeo-33-531-2015. [CrossRef] [Google Scholar]
- Prikryl P, Jayachandran PT, Mushini SC, Chadwick R. 2011. Climatology of GPS phase scintillation and HF radar backscatter for the high-latitude ionosphere under solar minimum conditions. Ann Geophys 29(2): 377–392. https://doi.org/10.5194/angeo-29-377-2011. [CrossRef] [Google Scholar]
- Prikryl P, Jayachandran PT, Mushini SC, Richardson IG. 2012. Toward the probabilistic forecasting of high-latitude GPS phase scintillation. Space Weather 10: S08005. https://doi.org/10.1029/2012sw000800. [Google Scholar]
- Prikryl P, Sreeja V, Aquino M, Jayachandran PT. 2013. Probabilistic forecasting of ionospheric scintillation and GNSS receiver signal tracking performance at high latitudes. Ann Geophys 56(2). https://doi.org/10.4401/ag-6219. [Google Scholar]
- Priyadarshi S. 2015a. Ionospheric scintillation modeling for high- and mid-latitude using B-spline technique. Astrophys Space Sci 359(1): 12. https://doi.org/10.1007/s10509-015-2461-x. [CrossRef] [Google Scholar]
- Priyadarshi S. 2015b. A Review of Ionospheric Scintillation Models. Surveys in Geophysics 36(2): 295–324. https://doi.org/10.1007/s10712-015-9319-1. [CrossRef] [Google Scholar]
- Rentz S, Lühr H. 2008. Climatology of the cusp-related thermospheric mass density anomaly, as derived from CHAMP observations. Ann Geophys 26: 2807–2823. [CrossRef] [Google Scholar]
- Richmond AD. 1995. Ionospheric electrodynamics using magnetic apex coordinates. J Geomag Geoelec 47(2): 191–212. https://doi.org/10.5636/jgg.47.191. [CrossRef] [Google Scholar]
- Secan JA, Bussey RM, Fremouw EJ, Basu S. 1997. High-latitude upgrade to the wideband ionospheric scintillation model. Radio Sci 32(4): 1567–1574. https://doi.org/10.1029/97RS00453. [CrossRef] [Google Scholar]
- Semeter J, Mrak S, Hirsch M, Swoboda J, Akbari H, et al. 2017. GPS signal corruption by the discrete aurora: Precise measurements from the Mahali Experiment. Geophys Res Lett 44(19): 9539–9546. https://doi.org/10.1002/2017GL073570. [CrossRef] [Google Scholar]
- Spicher A, Clausen LBN, Miloch WJ, Lofstad V, Jin Y, Moen JI. 2017. Interhemispheric study of polar cap patch occurrence based on Swarm in situ data. J Geophys Res (Space Phys) 122(3): 3837–3851. https://doi.org/10.1002/2016ja023750. [CrossRef] [Google Scholar]
- Spogli L, Alfonsi L, De Franceschi G, Romano V, Aquino MHO, Dodson A. 2009. Climatology of GPS ionospheric scintillations over high and mid-latitude European regions. Ann Geophys 27(9): 3429–3437. https://doi.org/10.5194/angeo-27-3429-2009. [CrossRef] [Google Scholar]
- Tapping KF. 2013. The 10.7 cm solar radio flux (F10.7). Space Weather 11(7): 394–406. https://doi.org/10.1002/swe.20064. [CrossRef] [Google Scholar]
- Tiwari R, Skone S, Tiwari S, Strangeways HJ. 2011. WBMod assisted PLL GPS software receiver for mitigating scintillation affect in high latitude region. In: 2011 XXXth URSI General Assembly and Scientific Symposium, 2011, pp. 1–4. https://doi.opg/10.1109/URSIGASS.2011.6050861. [Google Scholar]
- Tsurutani BT, Gonzalez WD, Gonzalez ALC, Guarnieri FL, Gopalswamy N, et al. 2006. Corotating solar wind streams and recurrent geomagnetic activity: A review. J Geophys Res (Space Phys) 111: A7. https://doi.org/10.1029/2005ja011273. [Google Scholar]
- Van der Meeren C, Oksavik K, Lorentzen D, Moen JI, Romano V. 2014. GPS scintillation and irregularities at the front of an ionization tongue in the nightside polar ionosphere. J Geophys Res (Space Phys) 119(10): 8624–8636. https://doi.org/10.1002/2014ja020114. [CrossRef] [Google Scholar]
- Van Dierendonck AJ, Klobuchar J, Hua Q. 1993. Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. Proceedings of the 6th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1993), Salt Lake City, UT, September 22–24, 1993, pp. 1333–1342. [Google Scholar]
- Vickrey JF, Kelley MC. 1982. The effects of a conducting E-layer on classical F-region cross-field plasma-diffusion. J Geophys Res (Space Phys) 87(Na6): 4461–4468. https://doi.org/10.1029/JA087iA06p04461. [CrossRef] [Google Scholar]
- Wang Y, Zhang Q-H, Jayachandran PT, Lockwood M, Zhang S-R, et al. 2016. A comparison between large-scale irregularities and scintillations in the polar ionosphere. Geophysical Research Letters 43(10): 4790–4798. https://doi.org/10.1002/2016GL069230. [CrossRef] [Google Scholar]
- Weber EJ, Klobuchar JA, Buchau J, Carlson HC, Livingston RC, et al. 1986. Polar cap-F layer patches – Structure and dynamics. J Geophys Res (Space Phys) 91(A11): 2121–2129. https://doi.org/10.1029/JA091iA11p12121. [Google Scholar]
- Wernik AW, Alfonsi L, Materassi M. 2007. Scintillation modeling using in situ data. Radio Sci 42(1): RS1002. https://doi.org/10.1029/2006RS003512. [Google Scholar]
- Wood AG, Pryse SE. 2010. Seasonal influence on polar cap patches in the high-latitude nightside ionosphere. J Geophys Res (Space Phys) 115. A7. https://doi.org/10.1029/2009ja014985. [Google Scholar]
- Xiong C, Park J, Luehr H, Stolle C, Ma SY. 2010a. Comparing plasma bubble occurrence rates at CHAMP and GRACE altitudes during high and low solar activity. Ann Geophys 28(9): 1647–1658. https://doi.org/10.5194/angeo-28-1647-2010. [CrossRef] [Google Scholar]
- Xiong C, Park J, Lühr H, Stolle C, Ma SY. 2010b. Comparing plasma bubble occurrence rates at CHAMP and GRACE altitudes during high and low solar activity. Ann Geophys 28(9): 1647–1658. https://doi.org/10.5194/angeo-28-1647-2010. [CrossRef] [Google Scholar]
- Yeh KC, Liu C-H. 1982. Radio wave scintillations in the ionosphere. Proc IEEE 70(4): 324–360. https://doi.org/10.1109/PROC.1982.12313. [CrossRef] [Google Scholar]
- Zhang ML, Liu C, Wan W, Liu L, Ning B. 2009. A global model of the ionospheric F2 peak height based on EOF analysis. Ann Geophys 27(8): 3203–3212. https://doi.org/10.5194/angeo-27-3203-2009. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.