Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 31 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/swsc/2022027 | |
Published online | 09 September 2022 |
- Ahn H-S, Sohn YK, Lee J-Y, Kim JC. 2018. Preliminary paleomagnetic and rock magnetic results from 17 to 22 ka sediment of jeju island, korea: Geomagnetic excursional behavior or rock magnetic anomalies? Earth Planets Space 70(1): 1–24. https://doi.org/10.1186/s40623-018-0850-4. [CrossRef] [Google Scholar]
- Alken P, Thébault E, Beggan CD, Amit H, Aubert J, et al. 2021. International geomagnetic reference field: The thirteenth generation. Earth Planets Space 73(1): 1–25. https://doi.org/10.1186/s40623-020-01288-x. [CrossRef] [Google Scholar]
- Beer J, McCracken K, Steiger R. 2012. Cosmogenic radionuclides: Theory and applications in the terrestrial and space environments. Springer Science & Business Media, Berlin, Heidelberg. [Google Scholar]
- Benson L, Liddicoat J, Smoot J, Sarna-Wojcicki A, Negrini R, Lund S. 2003. Age of the Mono Lake excursion and associated tephra. Quat Sci Rev 22(2–4): 135–140. https://doi.org/10.1016/S0277-3791(02)00249-4. [CrossRef] [Google Scholar]
- Bleil U, Gard G. 1989. Chronology and correlation of quaternary magnetostratigraphy and nannofossil biostratigraphy in Norwegian-Greenland sea sediments. Geol Rundsch 78(3): 1173–1187. https://doi.org/10.1007/BF01829339. [CrossRef] [Google Scholar]
- Brown MC, Donadini F, Korte M, Nilsson A, Korhonen K, Lodge A, Lengyel SN, Constable CG. 2015a. Geomagia50. v3: 1. General structure and modifications to the archeological and volcanic database. Earth Planets Space 67(1): 1–31. https://doi.org/10.1186/s40623-015-0232-0. [CrossRef] [Google Scholar]
- Brown MC, Donadini F, Nilsson A, Panovska S, Frank U, Korhonen K, Schuberth M, Korte M, Constable CG. 2015b. Geomagia50. v3: 2. A new paleomagnetic database for lake and marine sediments. Earth Planets Space 67(1): 1–19. https://doi.org/10.1186/s40623-015-0233-z. [CrossRef] [Google Scholar]
- Bütikofer R. 2018. Cosmic ray particle transport in the earth’s magnetosphere. In: Solar particle radiation storms forecasting and analysis, Springer, Cham, pp. 79–94. https://doi.org/10.1007/978-3-319-60051-2_5. [CrossRef] [Google Scholar]
- Carslaw K, Harrison R, Kirkby J. 2002. Cosmic rays, clouds, and climate. Science 298(5599): 1732–1737. https://doi.org/10.1126/science.1076964. [CrossRef] [Google Scholar]
- Channell J, Hodell D, Crowhurst S, Skinner L, Muscheler R. 2018. Relative paleointensity (rpi) in the latest pleistocene (10–45 ka) and implications for deglacial atmospheric radiocarbon. Quat Sci Rev 191: 57–72. https://doi.org/10.1016/j.quascirev.2018.05.007. [CrossRef] [Google Scholar]
- Clem J, Bieber J, Evenson P, Hall D, Humble J, Duldig M. 1997. Contribution of obliquely incident particles to neutron monitor counting rate. J Geophys Res: Space Phys 102(A12): 26919–26926. https://doi.org/10.1029/97JA02366. [CrossRef] [Google Scholar]
- Constable C, Korte M. 2015. Centennial-to millennial-scale geomagnetic field variations. In: Treatise on geophysics, Elsevier, Cambridge, pp. 309–341. https://doi.org/10.1016/B978-044452748-6.00094-8. [CrossRef] [Google Scholar]
- Constable C, Korte M, Panovska S. 2016. Persistent high paleosecular variation activity in southern hemisphere for at least 10,000 years. Earth Planet Sci Lett 453: 78–86. https://doi.org/10.1016/j.epsl.2016.08.015. [CrossRef] [Google Scholar]
- Cooke D, Humble J, Shea M, Smart D, Lund N, Rasmussen I, Byrnak B, Goret P, Petrou N. 1991. On cosmic-ray cut-off terminology. Il Nuovo Cimento C 14(3): 213–234. https://doi.org/10.1007/BF02509357. [NASA ADS] [CrossRef] [Google Scholar]
- Cooper A, Turney CS, Palmer J, Hogg A, McGlone M, Wilmshurst J, Lorrey AM, Heaton TJ, Russell JM, McCracken K, Anet JG, et al. 2021. A global environmental crisis 42,000 years ago. Science 371(6531): 811–818. https://doi.org/10.1126/science.abb8677. [CrossRef] [Google Scholar]
- Courtillot V, Gallet Y, Le Mouel J-L, Fluteau F, Genevey A. 2007. Are there connections between the earth’s magnetic field and climate? Earth Planet Sci Lett 253(3–4): 328–339. https://doi.org/10.1016/j.epsl.2006.10.032. [CrossRef] [Google Scholar]
- Desilets D, Zreda M. 2003. Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in situ cosmogenic dating. Earth Planet Sci Lett 206(1–2): 21–42. https://doi.org/10.1016/S0012-821X(02)01088-9. [CrossRef] [Google Scholar]
- Dunai TJ. 2000. Scaling factors for production rates of in situ produced cosmogenic nuclides: A critical reevaluation. Earth Planet Sci Lett 176(1): 157–169. https://doi.org/10.1016/S0012-821X(99)00310-6. [CrossRef] [Google Scholar]
- Dunai TJ. 2001. Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides. Earth Planet Sci Lett 193(1–2): 197–212. https://doi.org/10.1016/S0012-821X(01)00503-9. [CrossRef] [Google Scholar]
- Gaisser TK, Engel R, Resconi E. 2016. Cosmic rays and particle physics, Cambridge University Press, Cambridge. [CrossRef] [Google Scholar]
- Gao J, Korte M, Panovska S, Rong Z, Wei Y. 2022. Effects of the laschamps excursion on geomagnetic cutoff rigidities. Geochem Geophys Geosyst 23(2): e2021GC010261. https://doi.org/10.1029/2021GC010261. [Google Scholar]
- Gerontidou M, Katzourakis N, Mavromichalaki H, Yanke V, Eroshenko E. 2021. World grid of cosmic ray vertical cut-off rigidity for the last decade. Adv Space Res 67(7): 2231–2240. https://doi.org/10.1016/j.asr.2021.01.011. [CrossRef] [Google Scholar]
- Gosse JC, Phillips FM. 2001. Terrestrial in situ cosmogenic nuclides: Theory and application. Quat Sci Rev 20(14): 1475–1560. https://doi.org/10.1016/S0277-3791(00)00171-2. [CrossRef] [Google Scholar]
- Guyodo Y, Valet J-P. 1999. Global changes in intensity of the earth’s magnetic field during the past 800 kyr. Nature 399(6733): 249–252. https://doi.org/10.1038/20420. [CrossRef] [Google Scholar]
- Jackson A, Jonkers AR, Walker MR. 2000. Four centuries of geomagnetic secular variation from historical records. Philos Trans R Soc Lond Ser A: Math Phys Eng Sci 358(1768): 957–990. https://doi.org/10.1098/rsta.2000.0569. [CrossRef] [Google Scholar]
- Korte M, Constable C. 2003. Continuous global geomagnetic field models for the past 3000 years. Phys Earth Planet Inter 140(1–3): 73–89. https://doi.org/10.1016/j.pepi.2003.07.013. [CrossRef] [Google Scholar]
- Korte M, Constable C. 2008. Spatial and temporal resolution of millennial scale geomagnetic field models. Adv Space Res 41(1): 57–69. https://doi.org/10.1016/j.asr.2007.03.094. [CrossRef] [Google Scholar]
- Korte M, Muscheler R. 2012. Centennial to millennial geomagnetic field variations. J Space Weather Space Clim 2: A08. https://doi.org/10.1051/swsc/2012006. [CrossRef] [EDP Sciences] [Google Scholar]
- Korte M, Donadini F, Constable C. 2009. Geomagnetic field for 0–3 ka: 2. A new series of time-varying global models. Geochem Geophys Geosyst 10(6): Q06008. https://doi.org/10.1029/2008GC002297. [Google Scholar]
- Korte M, Constable C, Donadini F, Holme R. 2011. Reconstructing the holocene geomagnetic field. Earth and Planetary Science Letters 312(3–4): 497–505. https://doi.org/10.1016/j.epsl.2011.10.031. [CrossRef] [Google Scholar]
- Korte M, Brown MC, Gunnarson SR, Nilsson A, Panovska S, Wardinski I, Constable CG. 2019a. Refining holocene geochronologies using palaeomagnetic records. Quat Geochronol 50: 47–74. https://doi.org/10.1016/j.quageo.2018.11.004. [CrossRef] [Google Scholar]
- Korte M, Brown MC, Panovska S, Wardinski I. 2019b. Robust characteristics of the Laschamp and Mono Lake geomagnetic excursions: Results from global field models. Front Earth Sci 7: 86. https://doi.org/10.3389/feart.2019.00086. [CrossRef] [Google Scholar]
- Laj C, Channell J. 2015. 5.10 – geomagnetic excursions. In: Treatise on geophysics (second edition), 2nd edn, Schubert G. (Ed.), Elsevier, Oxford, pp. 343–383. https://doi.org/10.1016/B978-0-444-53802-4.00104-4. [CrossRef] [Google Scholar]
- Laj C, Kissel C, Beer J. 2004. High resolution global paleointensity stack since 75 kyr (glopis-75) calibrated to absolute values. Wash DC Am Geophys Union Geophys Monogr Ser 145: 255–265. https://doi.org/10.1029/145GM19. [Google Scholar]
- Lal D. 1991. Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth Planet Sci Lett 104(2–4): 424–439. https://doi.org/10.1016/0012-821X(91)90220-C. [CrossRef] [Google Scholar]
- Leonhardt R, Fabian K, Winklhofer M, Ferk A, Laj C, Kissel C. 2009. Geomagnetic field evolution during the Laschamp excursion. Earth Planet Sci Lett 278(1–2): 87–95. https://doi.org/10.1016/j.epsl.2008.11.028. [CrossRef] [Google Scholar]
- Lifton N. 2016. Implications of two holocene time-dependent geomagnetic models for cosmogenic nuclide production rate scaling. Earth Planet Sci Lett 433: 257–268. https://doi.org/10.1016/j.epsl.2015.11.006. [CrossRef] [Google Scholar]
- Lifton N, Smart D, Shea M. 2008. Scaling time-integrated in situ cosmogenic nuclide production rates using a continuous geomagnetic model. Earth Planet Sci Lett 268(1–2): 190–201. https://doi.org/10.1016/j.epsl.2008.01.021. [CrossRef] [Google Scholar]
- Marcaida M, Vazquez JA, Stelten ME, Miller JS. 2019. Constraining the early eruptive history of the mono craters rhyolites, California, based on 238u–230th isochron dating of their explosive and effusive products. Geochem Geophys Geosyst 20(3): 1539–1556. https://doi.org/10.1029/2018GC008052. [CrossRef] [Google Scholar]
- Mironova IA, Aplin KL, Arnold F, Bazilevskaya GA, Harrison RG, Krivolutsky AA, Nicoll KA, Rozanov EV, Turunen E, Usoskin IG. 2015. Energetic particle influence on the earth’s atmosphere. Space Sci Rev 194(1): 1–96. https://doi.org/10.1007/s11214-015-0185-4. [CrossRef] [Google Scholar]
- Nishiizumi K, Winterer E, Kohl C, Klein J, Middleton R, Lal D, Arnold J. 1989. Cosmic ray production rates of 10be and 26al in quartz from glacially polished rocks. J Geophys Res: Solid Earth 94(B12): 17907–17915. https://doi.org/10.1029/JB094iB12p17907. [CrossRef] [Google Scholar]
- Nowaczyk N, Frederichs T. 1999. Geomagnetic events and relative palaeointensity variations during the past 300 ka as recorded in Kolbeinsey ridge sediments, Iceland sea: Indication for a strongly variable geomagnetic field. Int J Earth Sci 88(1): 116–131. https://doi.org/10.1007/s005310050250. [CrossRef] [Google Scholar]
- Panovska S, Constable C. 2017. An activity index for geomagnetic paleosecular variation, excursions, and reversals. Geochem Geophys Geosyst 18(4): 1366–1375. https://doi.org/10.1002/2016GC006668. [CrossRef] [Google Scholar]
- Panovska S, Constable C, Brown M. 2018a. Global and regional assessments of paleosecular variation activity over the past 100 ka. Geochem Geophys Geosyst 19(5): 1559–1580. https://doi.org/10.1029/2017GC007271. [CrossRef] [Google Scholar]
- Panovska S, Constable C, Korte M. 2018b. Extending global continuous geomagnetic field reconstructions on timescales beyond human civilization. Geochem Geophys Geosyst 19(12): 4757–4772. https://doi.org/10.1029/2018GC007966. [CrossRef] [Google Scholar]
- Panovska S, Korte M, Constable C. 2019. One hundred thousand years of geomagnetic field evolution. Rev Geophys 57(4): 1289–1337. https://doi.org/10.1029/2019RG000656. [CrossRef] [Google Scholar]
- Panovska S, Korte M, Liu J, Nowaczyk N. 2021. Global evolution and dynamics of the geomagnetic field in the 15–70 kyr period based on selected paleomagnetic sediment records. J Geophys Res: Solid Earth 12: e2021JB022681. https://doi.org/10.1029/2021JB022681. [Google Scholar]
- Pavón-Carrasco FJ, Osete ML, Torta JM, De Santis A. 2014. A geomagnetic field model for the holocene based on archaeomagnetic and lava flow data. Earth Planet Sci Lett 388: 98–109. https://doi.org/10.1016/j.epsl.2013.11.046. [CrossRef] [Google Scholar]
- Poluianov S, Kovaltsov GA, Mishev AL, Usoskin IG. 2016. Production of cosmogenic isotopes 7be, 10be, 14c, 22na, and 36cl in the atmosphere: Altitudinal profiles of yield functions. J Geophys Res: Atmos 121(13): 8125–8136. https://doi.org/10.1002/2016JD025034. [CrossRef] [Google Scholar]
- Rao U, McCracken K, Venkatesan D. 1963. Asymptotic cones of acceptance and their use in the study of the daily variation of cosmic radiation. J Geophys Res 68(2): 345–369. https://doi.org/10.1029/JZ068i002p00345. [CrossRef] [Google Scholar]
- Reid GC. 2000. Solar variability and the earth’s climate: Introduction and overview. Space Sci Rev 94(1): 1–11. https://doi.org/10.1023/A:1026797127105. [CrossRef] [Google Scholar]
- Shea M, Smart D. 1990. The influence of the changing geomagnetic field on cosmic ray measurements. J Geomagn Geoelect 42(9): 1107–1121. https://doi.org/10.5636/jgg.42.1107. [CrossRef] [Google Scholar]
- Shea M, Smart D. 2000. Cosmic ray implications for human health. Cosm Rays Earth 93: 187–205. https://doi.org/10.1007/978-94-017-1187-6_10. [CrossRef] [Google Scholar]
- Shea M, Smart D. 2004. Preliminary study of cosmic rays, geomagnetic field changes and possible climate changes. Adv Space Res 34(2): 420–425. https://doi.org/10.1016/j.asr.2004.02.008. [CrossRef] [Google Scholar]
- Shea M, Smart D, McCracken K. 1965. A study of vertical cutoff rigidities using sixth degree simulations of the geomagnetic field. J Geophys Res 70(17): 4117–4130. https://doi.org/10.1029/JZ070i017p04117. [CrossRef] [Google Scholar]
- Singer BS. 2014. A quaternary geomagnetic instability time scale. Quat Geochronol 21: 29–52. (Quaternary Geochronology Special Issue: Advances in 40Ar/39Ar Dating of Quaternary Events and Processes). https://doi.org/10.1016/j.quageo.2013.10.003. [CrossRef] [Google Scholar]
- Smart D, Shea M. 2001. A comparison of the tsyganenko model predicted and measured geomagnetic cutoff latitudes. Adv Space Res 28(12): 1733–1738. https://doi.org/10.1016/S0273-1177(01)00539-7. [CrossRef] [Google Scholar]
- Smart D, Shea M. 2005. A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft. Adv Space Res 36(10): 2012–2020. https://doi.org/10.1016/j.asr.2004.09.015. [CrossRef] [Google Scholar]
- Smart D, Shea M. 2009. Fifty years of progress in geomagnetic cutoff rigidity determinations. Adv Space Res 44(10): 1107–1123. https://doi.org/10.1016/j.asr.2009.07.005. [CrossRef] [Google Scholar]
- Smart D, Shea M, Flückiger E. 2000. Magnetospheric models and trajectory computations. Cosm Rays Earth 93: 305–333. https://doi.org/10.1007/978-94-017-1187-6_15. [CrossRef] [Google Scholar]
- Solanki SK, Usoskin IG, Kromer B, Schüssler M, Beer J. 2004. Unusual activity of the sun during recent decades compared to the previous 11,000 years. Nature 431(7012): 1084–1087. https://doi.org/10.1038/nature02995. [CrossRef] [Google Scholar]
- Stadelmann A, Vogt J, Glassmeier K-H, Kallenrode M-B, Voigt G-H. 2010. Cosmic ray and solar energetic particle flux in paleomagnetospheres. Earth Planets Space 62(3): 333–345. https://doi.org/10.5047/eps.2009.10.002. [CrossRef] [Google Scholar]
- Steinhilber F, Abreu J, Beer J. 2008. Solar modulation during the holocene. Astrophys Space Sci Trans 4(1): 1–6. https://doi.org/10.5194/astra-4-1-2008. [CrossRef] [Google Scholar]
- Størmer C. 1955. The polar aurora, Clarendon Press, Oxford. [Google Scholar]
- Thouveny N, Carcaillet J, Moreno E, Leduc G, Nerini D. 2004. Geomagnetic moment variation and paleomagnetic excursions since 400 kyr bp: A stacked record from sedimentary sequences of the portuguese margin. Earth Planet Sci Lett 219(3–4): 377–396. https://doi.org/10.1016/S0012-821X(03)00701-5. [CrossRef] [Google Scholar]
- Usoskin IG. 2017. A history of solar activity over millennia. Living Rev Sol Phys 14(1): 1–97. https://doi.org/10.1007/s41116-017-0006-9. [CrossRef] [Google Scholar]
- Usoskin IG, Korte M, Kovaltsov G. 2008. Role of centennial geomagnetic changes in local atmospheric ionization. Geophys Res Lett 35(5): L05811. https://doi.org/10.1029/2007GL033040. [CrossRef] [Google Scholar]
- Usoskin IG, Solanki S, Korte M. 2006. Solar activity reconstructed over the last 7000 years: The influence of geomagnetic field changes. Geophys Res Lett 33(8): L08103. https://doi.org/10.1029/2006GL025921. [Google Scholar]
- Usoskin IG, Mironova I, Korte M, Kovaltsov G. 2010. Regional millennial trend in the cosmic ray induced ionization of the troposphere. J Atmos Sol-Terr Phys 72(1): 19–25. https://doi.org/10.1016/jjastp.2009.10.003. [CrossRef] [Google Scholar]
- Valet J-P, Meynadier L, Guyodo Y. 2005. Geomagnetic dipole strength and reversal rate over the past two million years. Nature 435(7043): 802–805. https://doi.org/10.1038/nature03674. [CrossRef] [Google Scholar]
- Vogt J, Zieger B, Glassmeier K-H, Stadelmann A, Kallenrode M-B, Sinnhuber M, Winkler H. 2007. Energetic particles in the paleomagnetosphere: Reduced dipole configurations and quadrupolar contributions. J Geophys Res: Space Phys 112(A6): A06216. https://doi.org/10.1029/2006JA012224. [Google Scholar]
- Vos EE, Potgieter MS. 2015. New modeling of galactic proton modulation during the minimum of solar cycle 23/24. Astrophys J 815(2): 119. https://doi.org/10.1088/0004-637X/815/2/119. [CrossRef] [Google Scholar]
- Ziegler L, Constable C. 2015. Testing the geocentric axial dipole hypothesis using regional paleomagnetic intensity records from 0 to 300 ka. Earth Planet Sci Lett 423: 48–56. https://doi.org/10.1016/j.epsl.2015.04.022. [CrossRef] [Google Scholar]
- Ziegler L, Constable C, Johnson C, Tauxe L. 2011. Padm2m: A penalized maximum likelihood model of the 0–2 ma palaeomagnetic axial dipole moment. Geophys J Int 184(3): 1069–1089. https://doi.org/10.1111/j.1365-246X.2010.04905.x. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.