Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 39 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/swsc/2022037 | |
Published online | 18 November 2022 |
- Andalsvik Y, Sandholt P, Farrugia C. 2011. Dayside and nightside contributions to cross-polar cap potential variations: the 20 March 2001 ICME case. Ann Geophys 29(11): 2189. https://doi.org/10.5194/angeo-29-2189-2011. [CrossRef] [Google Scholar]
- Andalsvik Y, Sandholt P, Farrugia C. 2012. Substorms and polar cap convection: the 10 January 2004 interplanetary CME case. Ann Geophys 30(1): 67–80. https://doi.org/10.5194/angeo-30-67-2012. [CrossRef] [Google Scholar]
- Anderson BJ, Takahashi K, Toth BA. 2000. Sensing global Birkeland currents with Iridium® engineering magnetometer data. Geophys Res Lett 27(24): 4045–4048. https://doi.org/10.1029/2000GL000094. [CrossRef] [Google Scholar]
- Birn J, Nakamura R, Panov E, Hesse M. 2011. Bursty bulk flows and dipolarization in MHD simulations of magnetotail reconnection. J Geophys Res Space Phys 116(A1). https://doi.org/10.1029/2010JA016083. [Google Scholar]
- Bristow W, Amata E, Spaleta J, Marcucci M. 2015. Observations of the relationship between ionospheric central polar cap and dayside throat convection velocities, and solar wind/IMF driving. J Geophys Res Space Phys 120(6): 4684–4699. https://doi.org/10.1002/2015JA021199. [CrossRef] [Google Scholar]
- Burch J, Reiff P, Menietti J, Heelis R, Hanson W, Shawhan S, Shelley E, Sugiura M, Weimer D, Winningham J. 1985. IMF By-dependent plasma flow and Birkeland currents in the dayside magnetosphere: 1. Dynamics Explorer observations. J Geophys Res Space Phys 90(A2): 1577–1593. https://doi.org/10.1029/JA090iA02p01577. [CrossRef] [Google Scholar]
- Burrell AG, Chisham G, Milan SE, Kilcommons L, Chen Y-J, Thomas EG, Anderson B. 2020. AMPERE polar cap boundaries. Ann Geophys 38(2): 481–490. https://doi.org/10.5194/angeo-38-481-2020. [CrossRef] [Google Scholar]
- Chisham G, Lester M, Milan S, Freeman M, Bristow W, et al. 2007. A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions. Surv Geophys 28(1): 33–109. https://doi.org/10.1007/s10712-007-9017-8. [CrossRef] [Google Scholar]
- Cnossen I, Wiltberger M, Ouellette JE. 2012. The effects of seasonal and diurnal variations in the Earth's magnetic dipole orientation on solar wind–magnetosphere–ionosphere coupling. J Geophys Res Space Phys 117(A11): https://doi.org/10.1029/2012JA017825. [Google Scholar]
- Cousins E, Shepherd S. 2010. A dynamical model of high-latitude convection derived from SuperDARN plasma drift measurements. J Geophys Res Space Phys 115(A12): https://doi.org/10.1029/2010JA016017. [Google Scholar]
- Coxon JC, Milan SE, Anderson BJ. 2018. A review of Birkeland current research using AMPERE. In: Electric Currents in Geospace and Beyond, Keiling A, Marghitu O, Wheatland M (Eds.), Wiley, pp. 55–57. https://doi.org/10.1002/9781119324522.ch16. [Google Scholar]
- Deng Y, Heelis R, Lyons LR, Nishimura Y, Gabrielse C. 2019. Impact of flow bursts in the auroral zone on the ionosphere and thermosphere. J Geophys Res Space Phys 124(12): 10459–10467. https://doi.org/10.1029/2019JA026755. [CrossRef] [Google Scholar]
- Dungey J. 1963. The structure of the exosphere, or adventures in velocity space, in: Geophysics, The Earth's Environment. deWitt C, Hieblot J, leBeau L (Eds.), Gordon and Breach, New York, pp. 505–550. [Google Scholar]
- Dungey JW. 1961. Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6(2): 47. https://doi.org/10.1103/PhysRevLett.6.47. [CrossRef] [Google Scholar]
- Farrugia C, Lund E, Sandholt P, Wild J, Cowley S, et al. 2004. Pulsed flows at the high-altitude cusp poleward boundary, and associated ionospheric convection and particle signatures, during a cluster-FAST-SuperDARN-sondrestrom conjunction under a southwest. Ann Geophys 22(8): 2891–2905. https://doi.org/10.5194/angeo-22-2891-2004. [CrossRef] [Google Scholar]
- Gabrielse C, Nishimura Y, Lyons L, Gallardo-Lacourt B, Deng Y, Donovan E. 2018. Statistical properties of mesoscale plasma flows in the nightside high-latitude ionosphere. J Geophys Res Space Phys 123(8): 6798–6820. https://doi.org/10.1029/2018JA025440. [CrossRef] [Google Scholar]
- Gallardo-Lacourt B, Nishimura Y, Lyons L, Zou S, Angelopoulos V, Donovan E, McWilliams K, Ruohoniemi J, Nishitani N. 2014. Coordinated SuperDARN THEMIS ASI observations of mesoscale flow bursts associated with auroral streamers. J Geophys Res Space Phys 119(1): 142–150. https://doi.org/10.1002/2013JA019245. [CrossRef] [Google Scholar]
- Greenwald R, Baker K, Dudeney J, Pinnock M, Jones T, et al. 1995. DARN/SUPERDARN: A global view of the dynamics of high-latitude convection. Space Sci Rev 71: 761–796. https://doi.org/10.1007/BF00751350. [CrossRef] [Google Scholar]
- Haerendel G, Paschmann G, Sckopke N, Rosenbauer H, Hedgecock P. 1978. The frontside boundary layer of the magnetosphere and the problem of reconnection. J Geophys Res Space Phys 83(A7): 3195–3216. https://doi.org/10.1029/JA083iA07p03195. [CrossRef] [Google Scholar]
- Heelis R. 1984. The effects of interplanetary magnetic field orientation on dayside high-latitude ionospheric convection. J Geophys Res Space Phys 89(A5): 2873–2880. https://doi.org/10.1029/JA089iA05p02873. [CrossRef] [Google Scholar]
- Heppner J, Maynard N. 1987. Empirical high-latitude electric field models. J Geophys Res Space Phys 92(A5): 4467–4489. https://doi.org/10.1029/JA092iA05p04467. [CrossRef] [Google Scholar]
- Heppner JP. 1977. Empirical models of high-latitude electric fields. J Geophys Res 82(7): 1115–1125. https://doi.org/10.1029/JA092iA05p04467. [CrossRef] [Google Scholar]
- Herlingshaw K, Baddeley L, Oksavik K, Lorentzen D, Bland E. 2019. A study of automatically detected flow channels in the polar cap ionosphere. J Geophys Res Space Phys 124: 9430–9447. https://doi.org/10.1029/2019JA026916. [CrossRef] [Google Scholar]
- Herlingshaw K, Baddeley L, Oksavik K, Lorentzen D, Bland E. 2020. A statistical study of polar cap flow channels and their IMF By dependence. J Geophys Res Space Phys 125: https://doi.org/10.1029/2020JA028359. [CrossRef] [Google Scholar]
- Iijima T, Potemra TA. 1976. The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. J Geophys Res 81(13): 2165–2174. https://doi.org/10.1029/JA081i013p02165. [CrossRef] [Google Scholar]
- Koustov AV, Ullrich S, Ponomarenko PV, Nishitani N, Marcucci FM, Bristow WA. 2019. Occurrence of F region echoes for the polar cap SuperDARN radars. Earth Planets Space 71(1): 1–17. https://doi.org/10.1186/s40623-019-1092-9. [NASA ADS] [CrossRef] [Google Scholar]
- Lockwood M, Moen J, Cowley S, Farmer A, Løvhaug U, Lühr H, Davda V. 1993. Variability of dayside convection and motions of the cusp/cleft aurora. Geophys Res Lett 20(11): 1011–1014. https://doi.org/10.1029/93GL00846. [CrossRef] [Google Scholar]
- Lockwood M, Wild M. 1993. On the quasi-periodic nature of magnetopause flux transfer events. J Geophys Res Space Phys 98(A4): 5935–5940. https://doi.org/10.1029/92JA02375. [CrossRef] [Google Scholar]
- Lu G, Richmond A, Emery B, Reiff P, de La Beaujardiere O, et al. 1994. Interhemispheric asymmetry of the high-latitude ionospheric convection pattern. J Geophys Res Space Phys 99(A4): 6491–6510. https://doi.org/10.1029/93JA03441. [CrossRef] [Google Scholar]
- Lyons L, Nishimura Y, Kim H-J, Donovan E, Angelopoulos V, Sofko G, Nicolls M, Heinselman C, Ruohoniemi J, Nishitani N. 2011. Possible connection of polar cap flows to pre-and post-substorm onset PBIs and streamers. J Geophys Res Space Phys 116(A12): https://doi.org/10.1029/2011JA016850. [Google Scholar]
- Lyons L, Nishimura Y, Zou Y. 2016. Unsolved problems: Mesoscale polar cap flow channels' structure, propagation, and effects on space weather disturbances. J Geophys Res Space Phys 121(4): 3347–3352. https://doi.org/10.1002/2016JA022437. [CrossRef] [Google Scholar]
- Mansurov S. 1969. New evidence of a relationship between magnetic fields in space and on Earth. Geomag Aeron 9: 622–623. [Google Scholar]
- Marchaudon A, Cerisier J-C, Greenwald R, Sofko G. 2004. Electrodynamics of a flux transfer event: Experimental test of the Southwood model. Geophys Res Lett 31(9): https://doi.org/10.1029/2004GL019922. [Google Scholar]
- Marklund G. 1984. Auroral arc classification scheme based on the observed arc-associated electric field pattern. Planet Space Sci 32(2): 193–211. https://doi.org/10.1016/0032-0633(84)90154-5. [CrossRef] [Google Scholar]
- McWilliams K, Yeoman T, Provan G. 2000. A statistical survey of dayside pulsed ionospheric flows as seen by the CUTLASS Finland HF radar. Ann Geophys 18(4): 445–453. https://doi.org/10.1007/s00585-000-0445-8. [CrossRef] [Google Scholar]
- Milan S, Carter J, Korth H, Anderson B. 2015. Principal component analysis of Birkeland currents determined by the active magnetosphere and planetary electrodynamics response experiment. J Geophys Res Space Phys 120(12): 10–415. https://doi.org/10.1002/2015JA021680. [Google Scholar]
- Milan S, Lester M, Cowley S, Brittnacher M. 2000. Convection and auroral response to a southward turning of the IMF: Polar UVI, CUTLASS, and IMAGE signatures of transient magnetic flux transfer at the magnetopause. J Geophys Res Space Phys 105(A7): 15741–15755. https://doi.org/10.1029/2000JA900022. [CrossRef] [Google Scholar]
- Moen J, Carlson H, Oksavik K, Nielsen C, Pryse S, Middleton H, McCrea I, Gallop P. 2006. EISCAT observations of plasma patches at sub-auroral cusp latitudes. Ann Geophys 24(9): 2363–2374. https://doi.org/10.5194/angeo-24-2363-2006. [CrossRef] [Google Scholar]
- Moen J, Sandholt P, Lockwood M, Denig W, Løvhaug U, Lybekk B, Egeland A, Opsvik D, Friis-Christensen E. 1995. Events of enhanced convection and related dayside auroral activity. J Geophys Res Space Phys 100(A12): 23917–23934. https://doi.org/10.1029/95JA02585. [CrossRef] [Google Scholar]
- Neudegg D, Cowley S, Milan S, Yeoman TK, Lester M, et al. 2000. A survey of magnetopause FTEs and associated flow bursts in the polar ionosphere. Ann Geophys 18(4): 416–435. https://doi.org/10.1007/s00585-000-0416-0. [CrossRef] [Google Scholar]
- Newell P, Ruohoniemi J, Meng C-I. 2004. Maps of precipitation by source region, binned by IMF, with inertial convection streamlines. J Geophys Res Space Phys 109(A10): https://doi.org/10.1029/2004JA010499. [CrossRef] [Google Scholar]
- Nishimura Y, Lyons LR, Zou Y, Oksavik K, Moen J, et al. 2014. Day-night coupling by a localized flow channel visualized by polar cap patch propagation. Geophys Res Lett 41(11): 3701–3709. https://doi.org/10.1002/2014GL060301. [CrossRef] [Google Scholar]
- Nishitani N, Ruohoniemi JM, Lester M, Baker JBH, Koustov AV, et al. 2019. Review of the accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN) HF radars. Prog Earth Planet Sci 6(1): 1–57. https://doi.org/10.1186/s40645-019-0300-3. [CrossRef] [Google Scholar]
- Oksavik K, Barth V, Moen J, Lester M. 2010. On the entry and transit of high-density plasma across the polar cap. J Geophys Res Space Phys 115(A12): https://doi.org/10.1029/2010JA015817. [Google Scholar]
- Papitashvili N, King J. 2020. “OMNI 1-min data” IMF Bx, By, Bz, velocity, field strength, and dynamic pressure. NASA Space Physics Data Facility. https://doi.org/10.48322/45bb-8792. Accessed on 28 October 2022. [Google Scholar]
- Pettigrew E, Shepherd S, Ruohoniemi J. 2010. Climatological patterns of high-latitude convection in the Northern and Southern hemispheres: Dipole tilt dependencies and interhemispheric comparisons. J Geophys Res Space Phys 115(A7): https://doi.org/10.1029/2009JA014956. [CrossRef] [Google Scholar]
- Pinnock M, Chisham G, Coleman I, Freeman M, Hairston M, Villain J-P. 2003. The location and rate of dayside reconnection during an interval of southward interplanetary magnetic field. Ann Geophys 21(7): 1467–1482. https://doi.org/10.5194/angeo-21-1467-2003. [CrossRef] [Google Scholar]
- Pinnock M, Rodger AS, Dudeney J, Baker K, Newell P, Greenwald R, Greenspan M. 1993. Observations of an enhanced convection channel in the cusp ionosphere. J Geophys Res Space Phys 98(A3): 3767–3776. https://doi.org/10.1029/92JA01382. [CrossRef] [Google Scholar]
- Provan G, Yeoman T, Cowley S. 1999. The influence of the IMF By component on the location of pulsed flows in the dayside ionosphere observed by an HF radar. Geophys Res Lett 26(4): 521–524. https://doi.org/10.1029/1999GL900009. [CrossRef] [Google Scholar]
- Provan G, Yeoman T, Milan S. 1998. CUTLASS Finland radar observations of the ionospheric signatures of flux transfer events and the resulting plasma flows. Ann Geophys 16(11): 1411–1422. https://doi.org/10.1007/s00585-998-1411-0. [CrossRef] [Google Scholar]
- Rich FJ, Hairston M. 1994. Large-scale convection patterns observed by DMSP. J Geophys Res Space Phys 99(A3): 3827–3844. https://doi.org/10.1029/93JA03296. [CrossRef] [Google Scholar]
- Ruohoniemi J, Greenwald R. 1996. Statistical patterns of high-latitude convection obtained from Goose Bay HF radar observations. J Geophys Res Space Phys 101(A10): 21743–21763. https://doi.org/10.1029/96JA01584. [CrossRef] [Google Scholar]
- Ruohoniemi J, Greenwald R. 2005. Dependencies of high-latitude plasma convection: Consideration of interplanetary magnetic field, seasonal, and universal time factors in statistical patterns. J Geophys Res Space Phys 110(A9): https://doi.org/10.1029/2004JA010815. [CrossRef] [Google Scholar]
- Russell C, McPherron R. 1973. Semiannual variation of geomagnetic activity. J Geophys Res 78(1): 92–108. https://doi.org/10.1029/JA078i001p00092. [CrossRef] [Google Scholar]
- Russell CT, Elphic R. 1978. Initial ISEE magnetometer results: Magnetopause observations. Space Sci Rev 22(6): 681–715. https://doi.org/10.1007/BF00212619. [CrossRef] [Google Scholar]
- Russell CT, Elphic R. 1979. ISEE observations of flux transfer events at the dayside magnetopause. Geophys Res Lett 6(1): 33–36. https://doi.org/10.1029/GL006i001p00033. [CrossRef] [Google Scholar]
- Sandholt P, Andalsvik Y, Farrugia C. 2010. Polar cap convection/precipitation states during Earth passage of two ICMEs at solar minimum. Ann Geophys 28(4): 1023–1042. https://doi.org/10.5194/angeo-28-1023-2010. [CrossRef] [Google Scholar]
- Sandholt P, Farrugia C. 2007. Role of poleward moving auroral forms in the dawn-dusk auroral precipitation asymmetries induced by IMF By. J Geophys Res Space Phys 112(A4): https://doi.org/10.1029/2006JA011952. [Google Scholar]
- Sandholt P, Farrugia C. 2009. Plasma flow channels at the dawn/dusk polar cap boundaries: Momentum transfer on old open field lines and the roles of IMF By and conductivity gradients. Ann Geophys 27(4): 1527–1554. https://doi.org/10.5194/angeo-27-1527-2009. [CrossRef] [Google Scholar]
- Sandholt P, Farrugia C, Denig W. 2004. Detailed dayside auroral morphology as a function of local time for southeast IMF orientation: Implications for solar wind-magnetosphere coupling. Ann Geophys 22(10): 3537–3560. https://doi.org/10.5194/angeo-22-3537-2004. [CrossRef] [Google Scholar]
- Sergeev V, Angelopoulos V, Gosling J, Cattell C, Russell C. 1996. Detection of localized, plasma-depleted flux tubes or bubbles in the midtail plasma sheet. J Geophys Res Space Phys 101(A5): 10817–10826. https://doi.org/10.1029/96JA00460. [CrossRef] [Google Scholar]
- Stern DP. 1984. Magnetospheric dynamo processes. In: Magnetospheric Currents, Potemra TA (Ed.), Wiley Online Library. https://doi.org/10.1029/GM028p0200. [Google Scholar]
- Svalgaard L. 1968. Sector structure of the interplanetary magnetic field and daily variation of the geomagneticfield at high latitudes, Paper 6, Danish Meteorological Inst. Geophysics, Charlottenlund, Denmark. [Google Scholar]
- Tenfjord P, Østgaard N, Haaland S, Snekvik K, Laundal K, Reistad J, Strangeway R, Milan S, Hesse M, Ohma A. 2018. How the IMF By induces a local By component during northward IMF Bz and characteristic timescales. J Geophys Res Space Phys 123(5): 3333–3348. https://doi.org/10.1002/2018JA025186. [CrossRef] [Google Scholar]
- Tenfjord P, Østgaard N, Snekvik K, Laundal KM, Reistad JP, Haaland S, Milan S. 2015. How the IMF By induces a By component in the closed magnetosphere and how it leads to asymmetric currents and convection patterns in the two hemispheres. J Geophys Res Space Phys 120(11): 9368–9384. https://doi.org/10.1002/2015JA021579. [CrossRef] [Google Scholar]
- Thomas EG, Shepherd SG. 2018. Statistical patterns of ionospheric convection derived from mid-latitude, high-latitude, and polar SuperDARN HF radar observations. J Geophys Res Space Phys 123(4): 3196–3216. https://doi.org/10.1002/2018JA025280. [CrossRef] [Google Scholar]
- Wang H, Lühr H, Ma S, Ritter P. 2005. Statistical study of the substorm onset: its dependence on solar wind parameters and solar illumination. Ann Geophys 23(6): 2069–2079. https://doi.org/10.5194/angeo-23-2069-2005. [CrossRef] [Google Scholar]
- Wang H, Lühr H, Ridley AJ. 2010. Plasma convection jets near the poleward boundary of the nightside auroral oval and their relation to Pedersen conductivity gradients. Ann Geophys 28(4): 969–976. https://doi.org/10.5194/angeo-28-969-2010. [CrossRef] [Google Scholar]
- Wild JA, Grocott A. 2008. The influence of magnetospheric substorms on SuperDARN radar backscatter. J Geophys Res Space Phys 113(A4): https://doi.org/10.1029/2007JA012910. [Google Scholar]
- Zou Y, Nishimura Y, Lyons L, Donovan E, Ruohoniemi J, Nishitani N, McWilliams K. 2014. Statistical relationships between enhanced polar cap flows and PBIs. J Geophys Res Space Phys 119(1): 151–162. https://doi.org/10.1002/2013JA019269. [CrossRef] [Google Scholar]
- Zou Y, Nishimura Y, Lyons LR, Donovan EF, Shiokawa K, Ruohoniemi JM, McWilliams KA, Nishitani N. 2015. Polar cap precursor of nightside auroral oval intensifications using polar cap arcs. J Geophys Res Space Phys 120(12): 10–698. https://doi.org/10.1002/2015JA021816. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.