Issue |
J. Space Weather Space Clim.
Volume 12, 2022
Topical Issue - Ionospheric plasma irregularities and their impact on radio systems
|
|
---|---|---|
Article Number | 40 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/swsc/2022036 | |
Published online | 18 November 2022 |
- Aarons J, Basu S. 1994. Ionospheric amplitude and phase fluctuations at the GPS frequencies. In: Proceedings of the 7th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1994), Salt Lake City, UT, September 20–23, pp. 1569–1578. [Google Scholar]
- Aarons J. 1982. Global morphology of ionospheric scintillations. Proc IEEE 70(4): 360–378. https://doi.org/10.1109/PROC.1982.12314. [CrossRef] [Google Scholar]
- Basu S, Mullen JP, Bushby A. 1980. Long-term 1.5 GHz amplitude scintillation measurements at the geomagnetic equator. Geophys Res Lett 7(4): 259–262. https://doi.org/10.1029/GL007i004p00259. [CrossRef] [Google Scholar]
- Beach TL. 2006. Perils of the GPS phase scintillation index (σϕ). Radio Sci 41(5): 1–7. https://doi.org/10.1029/2005RS003356. [Google Scholar]
- Berdermann J, Kriegel M, Banyś D, Heymann F, Hoque MM, Wilken V, Borries C, Heßelbarth A, Jakowski N. 2018. Ionospheric response to the X9.3 flare on 6 September 2017 and its implication for navigation services over Europe. Space Weather 16(4): 1604–1615. https://doi.org/10.1029/2018SW001933. [CrossRef] [Google Scholar]
- Bhattacharyya A, Beach TL, Basu S, Kintner PM. 2000. Nighttime equatorial ionosphere: GPS scintillations and differential carrier phase fluctuations. Radio Sci 35(1): 209–224. https://doi.org/10.1029/1999RS002213. [CrossRef] [Google Scholar]
- Bittencourt JA. 2004. Fundamentals of plasma physics, 3rd edn. Springer, New York. ISBN 978-1-4419-1930-4. [CrossRef] [Google Scholar]
- Blagoveshchensky DV, Sergeeva MA. 2019. Impact of geomagnetic storm of September 7–8, 2017 on ionosphere and HF propagation: A multi-instrument study. Adv Space Res 63(1): 239–256. https://doi.org/10.1016/j.asr.2018.07.016. [CrossRef] [Google Scholar]
- Booker HG, Ratcliffe JA, Shinn DH. 1950. Diffraction from an irregular screen with applications to ionospheric problems. Philos Trans R Soc A 242(856): 579–609. https://doi.org/10.1098/rsta.1950.0011. [Google Scholar]
- Carrano CS, Groves KM, McNeil WJ, Doherty PH. 2013. Direct measurement of the residual in the ionosphere-free linear combination during scintillation. In: Proceedings of the 2013 Institute of Navigation ION NTM Meeting, San Diego, CA, January 28–30, pp. 585–596. [Google Scholar]
- Carrano CS, Groves KM, Rino CL. 2019. On the relationship between the rate of change of total electron content index (ROTI), irregularity strength (CkL), and the scintillation index (S4). J Geophys Res: Space Phys 124(3): 2099–2112. https://doi.org/10.1029/2018JA026353. [CrossRef] [Google Scholar]
- Carrano CS, Groves KM. 2007. TEC gradients and fluctuations at low, latitudes measured with high data rate GPS receivers. In: Proceedings of the 63rd Annual Meeting of The Institute of Navigation, Cambridge, MA, April 23–25, 2007, 156–163. [Google Scholar]
- Carrano CS, Rino CL. 2016. A theory of scintillation for two-component power law irregularity spectra: overview and numerical results. Radio Sci 51(6): 789–813. https://doi.org/10.1002/2015RS005903. [CrossRef] [Google Scholar]
- Cordes JM, Pidwerbetsky A, Lovelace RVE. 1986. Refractive and diffractive scattering in the interstellar medium. Astrophys J 310: 737–767. https://doi.org/10.1086/164728. [CrossRef] [Google Scholar]
- Demyanov VV, Yasyukevich YV, Jin S, Sergeeva MA. 2019. The second-order derivative of GPS carrier phase as a promising means for ionospheric scintillation research. Pure Appl Geophys 176: 4555–4573. https://doi.org/10.1007/s00024-019-02281-6. [CrossRef] [Google Scholar]
- Emmert JT, Richmond AD, Drob DP. 2010. A computationally compact representation of Magnetic-Apex and Quasi-Dipole coordinates with smooth base vectors. J Geophys Res: Space Phys 115(A8): A08322. https://doi.org/10.1029/2010JA015326. [Google Scholar]
- Forte B, Radicella SM. 2002. Problems in data treatment for ionospheric scintillation measurements. Radio Sci 37(6): 1–8. https://doi.org/10.1029/2001RS002508. [Google Scholar]
- Forte B. 2005. Optimum detrending of raw GPS data for scintillation measurements at auroral latitudes. J Atmos Terr Phys 67(12): 1100–1109. https://doi.org/10.1016/j.jastp.2005.01.011. [CrossRef] [Google Scholar]
- Gherm VE, Zernov NN, Strangeways HJ. 2005. Propagation model for transionospheric fluctuating paths of propagation: Simulator of the transionospheric channel. Radio Sci 40(1): RS1003. https://doi.org/10.1029/2004RS003097. [Google Scholar]
- Ghobadi H, Spogli L, Alfonsi L, Cesaroni C, Cicone A, Linty N, Romano V, Cafaro M. 2020. Disentangling ionospheric refraction and diffraction effects in GNSS raw phase through fast iterative filtering technique. GPS Solut 24: 85. https://doi.org/10.1007/s10291-020-01001-1. [CrossRef] [Google Scholar]
- Jin Y, Moen JI, Miloch WJ. 2014. GPS scintillation effects associated with polar cap patches and substorm auroral activity: direct comparison. J Space Weather Space Clim 4: A23. https://doi.org/10.1051/swsc/2014019. [CrossRef] [EDP Sciences] [Google Scholar]
- Jin Y, Moen JI, Oksavik K, Spicher A, Clausen LBN, Miloch WJ. 2017. GPS scintillations associated with cusp dynamics and polar cap patches. J Space Weather Space Clim 7: A23. https://doi.org/10.1051/swsc/2017022. [Google Scholar]
- Juan JM, Aragon-Angel A, Sanz J, Rovira-Garcia A. 2017. A method for scintillation characterization using geodetic receivers operating at 1 Hz. J Geod 91: 1383–1397. https://doi.org/10.1007/s00190-017-1031-0. [CrossRef] [Google Scholar]
- Kashcheyev A, Nava B, Radicella SM. 2012. Estimation of higher-order ionospheric errors in GNSS positioning using a realistic 3-D electron density model. Radio Sci 47(4): RS4008. https://doi:10.1029/2011RS004976. [CrossRef] [Google Scholar]
- Kintner PM, Ledvina BM, de Paula ER. 2007. GPS and ionospheric scintillations. Space Weather 5(9): S09003. https://doi.org/10.1029/2006SW000260. [Google Scholar]
- Li W, Song S, Jin X. 2022. Ionospheric scintillation monitoring with ROTI from geodetic receiver: Limitations and performance evaluation. Radio Sci 57(5): e2021RS007420. https://doi.org/10.1029/2021RS007420. [Google Scholar]
- McCaffrey AM, Jayachandran PT. 2019. Determination of the Refractive Contribution to GPS Phase “Scintillation”. J Geophys Res: Space Phys 124(2): 1456–1469. https://doi.org/10.1029/2018JA025759. [Google Scholar]
- McCaffrey AM, Jayachandran PT, Langley RB, Sleewaegen JM. 2018. On the accuracy of the GPS L2 observable for ionospheric monitoring. GPS Solut 22: 23. https://doi.org/10.1007/s10291-017-0688-4. [CrossRef] [Google Scholar]
- Mushini SC, Jayachandran PT, Langley RB, MacDougall JW, Pokhotelov D. 2012. Improved amplitude- and phase-scintillation indices derived from wavelet detrended high-latitude GPS data. GPS Solut 16(4): 363–373. https://doi.org/10.1007/s10291-011-0238-4. [Google Scholar]
- Oksavik K. 2020. The University of Bergen Global Navigation Satellite System Data Collection. DataverseNO. https://doi.org/10.18710/AJ4S-X394. [Google Scholar]
- Oksavik K, van der Meeren C, Lorentzen DA, Baddeley LJ, Moen J. 2015. Scintillation and loss of lock from poleward moving auroral forms in the cusp ionosphere. J Geophys Res Space Phys 120(10): 9161–9175. https://doi.org/10.1002/2015JA021528. [CrossRef] [Google Scholar]
- Pi X, Mannucci AJ, Lindqwister UJ, Ho CM. 1997. Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophys Res Lett 24(18): 2283–2286. https://doi.org/10.1029/97GL02273. [Google Scholar]
- Rino CL, Fremouw EJ. 1977. The angle dependence of singly scattered wavefields. J Atmos Terr Phys 39(8): 859–868. https://doi.org/10.1016/0021-9169(77)90166-0. [CrossRef] [Google Scholar]
- Rino CL. 1979a. A power law phase screen model for ionospheric scintillation: 1. Weak scatter. Radio Sci 14(6): 1135–1145. https://doi.org/10.1029/rs014i006p01135. [CrossRef] [Google Scholar]
- Rino CL. 1979b. A power law phase screen model for ionospheric scintillation: 2: Strong scatter. Radio Sci 14(6): 1147–1155. https://doi.org/10.1029/RS014i006p01147. [CrossRef] [Google Scholar]
- Schaer S. 1999. Mapping and predicting the earth’s ionosphere using the global positioning system, Ph.D. Thesis. University of Bern, Bern, Switzerland. [Google Scholar]
- Spogli L, Alfonsi L, Cilliers PJ, Correia E, De Franceschi G, Mitchell CN, Romano V, Kinrade J, Cabrera MA. 2013. GPS scintillations and total electron content climatology in the southern low, middle and high latitude regions. Ann Geophys 56(2): R0220. https://doi.org/10.4401/ag-6240. [Google Scholar]
- Stolle C, Lühr H, Fejer BG. 2008. Relation between the occurrence rate of ESF and the equatorial vertical plasma drift velocity at sunset derived from global observations. Ann Geophys 26(12): 3979–3988. https://doi.org/10.1029/2005JA011330. [CrossRef] [Google Scholar]
- Su SY, Liu CH, Ho HH, Chao CK. 2006. Distribution characteristics of topside ionospheric density irregularities: Equatorial versus midlatitude regions. J Geophys Res: Space Phys 111(A6): A06305. https://doi.org/10.1029/2005JA011330. [Google Scholar]
- van Dierendonck AJ, Arbesser-Rastburg B. 2004. Measuring Ionospheric scintillation in the equatorial region over Africa, including measurements from SBAS geostationary satellite signals. In: Proceedings of the ION GNSS 2004, Institute of Navigation, Long Beach, CA, September 21–24, 2004, pp.316–324. [Google Scholar]
- van Dierendonck AJ, Klobuchar J, Hua Q. 1993. Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. In: Proceedings of the 6th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1993), Salt Lake City, UT, 22-24 September, pp. 1333–1342. [Google Scholar]
- Wang Y, Zhang QH, Jayachandran PT, Moen J, Xing ZY, Chadwick R, Ma YZ, Ruohoniemi JM, Lester M. 2018. Experimental evidence on the dependence of the standard GPS phase scintillation index on the ionospheric plasma drift around noon sector of the polar ionosphere. J Geophys Res Space Phys 123(3): 2370–2378. https://doi.org/10.1002/2017JA024805. [Google Scholar]
- Xiong C, Park J, Lühr H, Stolle C, Ma SY. 2010. Comparing plasma bubble occurrence rates at CHAMP and GRACE altitudes during high and low solar activity. Ann Geophy 28(9): 1647–1658. https://doi.org/10.5194/angeo-28-1647-2010. [CrossRef] [Google Scholar]
- Xiong C, Xu J, Stolle C, van den Ijssel J, Yin F, Kervalishvili GN, Zangerl F. 2020. On the occurrence of GPS signal amplitude degradation for receivers on board LEO satellites. Space Weather 18(2): e2019SW002398. https://doi.org/10.1029/2019SW002398. [CrossRef] [Google Scholar]
- Xiong C, Yin F, Luo X, Jin Y, Wan X. 2019. Plasma patches inside the polar cap and auroral oval: the impact on the spaceborne GPS receiver. J Space Weather Space Clim 9: A25. https://doi.org/10.1051/swsc/2019028. [CrossRef] [EDP Sciences] [Google Scholar]
- Xu DY, Morton Y, Yu J, Rino C. 2018. Simulation and tracking algorithm evaluation for scintillation signals on LEO satellites traveling inside the ionosphere. In: 2018 IEEE/ION position, location and navigation symposium (PLANS), Monterey, CA, April 23–26, 2018, pp. 1143–1149. https://doi.org/10.1109/PLANS.2018.8373498. [Google Scholar]
- Yang Z, Liu Z. 2016. Correlation between ROTI and ionospheric scintillation indices using Hong Kong low-latitude GPS data. GPS Solut 20(4): 815–824. https://doi.org/10.1007/s10291-015-0492-y. [CrossRef] [Google Scholar]
- Yasyukevich YV, Yasyukevich AS, Astafyeva EI. 2021. How modernized and strengthened GPS signals enhance the system performance during solar radio bursts. GPS Solut 25: 46. https://doi.org/10.1007/s10291-021-01091-5. [CrossRef] [Google Scholar]
- Yeh KC, Liu CH. 1982. Radio wave scintillations in the ionosphere. Proc IEEE 70(4): 324–360. https://doi.org/10.1109/proc.1982.12313. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.