Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 38 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/swsc/2022035 | |
Published online | 11 November 2022 |
- Anderson DN. 1973. A theoretical study of the ionospheric F region equatorial anomaly – II. Results in the American and Asian sectors. Planet Space Sci 21(3): 421–442. https://doi.org/10.1016/0032-0633(73)90041-X. [CrossRef] [Google Scholar]
- Adeniyi JO, Joshua BW. 2014. Latitudinal effect on the diurnal variation of the F2 layer at low solar activity. J Atmos Sol Terr Phys 120: 102–110. https://doi.org/10.1016/j.jastp.2014.09.005. [CrossRef] [Google Scholar]
- Arikan FEZA, Erol CB, Arikan O. 2003. Regularized estimation of vertical total electron content from global positioning system data. J Geophys Res Space Phys 108(A12): https://doi.org/10.1029/2002JA009605. [Google Scholar]
- Arikan FEZA, Erol CB, Arikan O. 2004. Regularized estimation of vertical total electron content from GPS data for a desired time period. Radio Sci 39(6): https://doi.org/10.1029/2004RS003061. [Google Scholar]
- Arikan F, Arikan O, Erol CB. 2007. Regularized estimation of TEC from GPS data for certain midlatitude stations and comparison with the IRI model. Adv Space Res 39(5): 867–874. https://doi.org/10.1016/j.asr.2007.01.082. [CrossRef] [Google Scholar]
- Arikan FEZA, Nayir H, Sezen UMUT, Arikan O. 2008. Estimation of single station interfrequency receiver bias using GPS-TEC. Radio Sci 43(4): https://doi.org/10.1029/2007RS003785. [Google Scholar]
- Adebesin BO, Rabiu AB, Obrou OK, Adeniyi JO. 2018. Ionospheric peak electron density and performance evaluation of IRI-CCIR near magnetic equator in Africa during two extreme solar activities. Space Weather 16(3): 230–244. https://doi.org/10.1002/2017SW001729. [CrossRef] [Google Scholar]
- Adebiyi S, Adimula I, Oladipo O. 2020. Inter-hemispheric comparison of ionospheric TEC variation at each latitudinal band during quiet geomagnetic condition. J Niger Soc Phys Sci 77–90. https://doi.org/10.46481/jnsps.2020.23. [CrossRef] [Google Scholar]
- Bhuyan PK, Borah RR. 2007. TEC derived from GPS network in India and comparison with the IRI. Adv Space Res 39(5): 830–840. https://doi.org/10.1016/j.asr.2007.01.082. [CrossRef] [Google Scholar]
- Chen Y, Liu L, Le H, Zhang H. 2020. Equatorial north-south difference of noontime electron density bite-out in the F2 layer. J Geophys Res Space Phys 125(8): e2020JA028124. https://doi.org/10.1029/2020JA028124. [Google Scholar]
- Chen Y, Liu L, Le H, Zhang H. 2021. Latitudinal dependence of daytime electron density bite-out in the ionospheric F2-layer. J Geophys Res Space Phys 126(1): e2020JA028277. https://doi.org/10.1029/2020JA028277. [Google Scholar]
- Erol CB, Arikan F, Arikan O. June 2002. A new technique for TEC estimation. In: IEEE International Geoscience and Remote Sensing Symposium, vol. 2, pp. 1284–1286. https://doi.org/10.1109/IGARSS.2002.1025915. [CrossRef] [Google Scholar]
- Horvath I, Essex EA. 2003. The southern-hemisphere mid-latitude day-time and night-time trough at low-sunspot numbers. J Atmos Sol Terr Phys 65(8): 917–940. https://doi.org/10.1016/S1364-6826(03)00113-5. [CrossRef] [Google Scholar]
- Huang YN, Jeng BS. 1978. On the forenoon bite-out in the critical frequency of the F2-layer. J Atmos Terr Phys 40: 581–584. https://doi.org/10.1016/0021-9169(78)90097-1. [CrossRef] [Google Scholar]
- Huang F, Li Q, Shen X, Xiong C, Yan R, Zhang SR, Wang W, Aa E, Zhong J, Dang T, Lei J. 2020. Ionospheric responses at low latitudes to the annular solar eclipse on 21 June 2020. J Geophys Res Space Phys 125(10): e2020JA028483. https://doi.org/10.1029/2020JA028483. [Google Scholar]
- He S, Zhang D, Hao Y, Xiao Z. 2020. Statistical study on the occurrence of the ionospheric mid-latitude trough and the variation of trough minimum location over northern hemisphere. Chinese J Geophys 63(1): 31–46. https://doi.org/10.6038/cjg2020M0564. [Google Scholar]
- Joshua BW, Adeniyi JO, Oladipo OA, Doherty PH, Adimula IA, Olawepo AO, Adebiyi SJ. 2018. Simultaneous response of NmF2 and GPS-TEC to storm events at Ilorin. Adv Space Res 61(12): 2904–2913. https://doi.org/10.1016/j.asr.2018.03.031. [CrossRef] [Google Scholar]
- Jonah OF, Goncharenko L, Erickson PJ, Zhang S, Coster A, Chau JL, Rideout W. 2020. Anomalous behavior of the equatorial ionization anomaly during the 2 July 2019 solar eclipse. J Geophys Res Space Phys 125(9): e2020JA027909. https://doi.org/10.1029/2020JA027909. [CrossRef] [Google Scholar]
- Katamzi Z. 2011. Statistical analysis of ionospheric total electron content. University of Bath, (Doctoral dissertation). https://researchportal.bath.ac.uk/en/studentTheses/statistical-analysis-of-ionospheric-total-electron-content. [Google Scholar]
- Kohl H, King JW, Eccles D. 1968. Some effects of neutral air winds on the ionospheric F-layer. J Atmos Terr Phys 30(10): 1733–1744. https://doi.org/10.1016/0021-9169(68)90094-9. [CrossRef] [Google Scholar]
- Khan ZM, Ara H, Iqbal S, Nasir M. 1985. On the cause of fore-noon & post-noon bite-outs in foF2. J Atmos Terr Phys 47: 719–724. https://doi.org/10.1016/0021-9169(85)90107-2. [CrossRef] [Google Scholar]
- Katamzi ZT, Smith ND, Mitchell CN, Spalla P. 2012. Analysis of diurnal double maxima observed above Italy during 1975–1991. J. Atmos. Sol. Terr. Phys. 89: 67–75. https://doi.org/10.1016/j.jastp.2012.08.001. [CrossRef] [Google Scholar]
- Katamzi ZT, Habarulema JB, Giday NM. 2016. Daytime twin-peak structures observed at southern African and European middle latitudes on 8–13 April 2012. Ann Geophys 34: 581–590. https://doi.org/10.5194/angeo-34-581-2016. [CrossRef] [Google Scholar]
- Karpachev AT, Klimenko MV, Klimenko VV. 2019. Longitudinal variations of the ionospheric trough position. Adv Space Res 63(2): 950–966. https://doi.org/10.1016/j.asr.2018.09.038. [CrossRef] [Google Scholar]
- Lee CC. 2012. Examination of the absence of noontime bite-out in equatorial total electron content. J Geophys Res Space Phys 117(A9): https://doi.org/10.1029/2012JA017909. [Google Scholar]
- Lynn KJ, Gardiner-Garden RS, Heitmann A. 2014. The spatial and temporal structure of twin peaks and midday bite out in foF2 (with associated height changes) in the Australian and South Pacific low midlatitude ionosphere. J Geophys Res Space Phys 119(12): 10–294. https://doi.org/10.1002/2014JA020617. [Google Scholar]
- Liu YW, Xu JS, Xu L, Yin F. 2015. A study on the position variation of mid-latitude ionospheric trough minimum and its controlling factors. Chinese J Geophys 58(1): 12–19. https://doi.org/10.6038/cjg20150102. [Google Scholar]
- Moffett RJ, Quegan S. 1983. The mid-latitude trough in the electron concentration of the ionospheric F-layer: a review of observations and modelling. J Atmos Terr Phy 45(5): 315–343. https://doi.org/10.1016/S0021-9169(83)80038-5. [CrossRef] [Google Scholar]
- Mukherjee S, Sarkar S, Purohit PK, Gwal AK. 2010. Seasonal variation of total electron content at crest of equatorial anomaly station during low solar activity conditions. Adv Space Res 46(3): 291–295. https://doi.org/10.1016/j.asr.2010.03.024. [CrossRef] [Google Scholar]
- Nayir H, Arikan FEZA, Arikan O, Erol CB. 2007. Total electron content estimation with Reg-Est.. J Geophy Res Space Phys 112(A11): https://doi.org/10.1029/2007JA012459. [Google Scholar]
- Ouattara F, Zoundi C, Fleury R. 2012. Comparison between CODG TEC and GPS based TEC observations at Koudougou station in Burkina Faso. Indian J Radio Space Phys 41: 617–623. https://hal.archives-ouvertes.fr/hal-00940398. [Google Scholar]
- Opio P, D’ujanga, FM, Ssenyonga T. 2015. Latitudinal variation of the ionosphere in the African sector using GPS TEC data. Adv Space Res 55(6): 1640–1650. https://doi.org/10.1016/j.asr.2014.12.036. [CrossRef] [Google Scholar]
- Oluwadare TS, Thai CN, Akala AOO, Heise S, Alizadeh M, Schuh H. 2019. Characterization of GPS-TEC over African equatorial ionization anomaly (EIA) region during 2009–2016. Adv Space Res 63(1): 282–301. https://doi.org/10.1016/j.asr.2018.08.044. [CrossRef] [Google Scholar]
- Pi X, Mendillo M, Fox MW, Anderson DN. 1993. Diurnal double maxima patterns in the F region ionosphere: Substorm-related aspects. J Geophys Res Space Phys 98(A8): 13677–13691. https://doi.org/10.1029/93JA00502. [CrossRef] [Google Scholar]
- Pryse SE, Kersley L, Williams MJ, Walker IK. 1998. The spatial structure of the dayside ionospheric trough. Ann Geophys 16: 1169–1179. https://doi.org/10.1007/s00585-998-1169-4. [CrossRef] [Google Scholar]
- Pavan Chaitanya P, Patra AK, Balan N, Rao SVB. 2015. Ionospheric variations over Indian low latitudes close to the equator and comparison with IRI-2012. Ann Geophys 33: 997–1006. https://doi.org/10.5194/angeo-33-997-2015. [CrossRef] [Google Scholar]
- Rajaram G. 1977. Structure of the equatorial F-region, topside and bottomside – A review. J Atmos Terr Phys 39(9–10): 1125–1144. https://doi.org/10.1016/0021-9169(77)90021-6. [CrossRef] [Google Scholar]
- Rishbeth H. 1998. How the thermospheric circulation affects the ionospheric F2-layer. J Atmos Sol Terr Phys 60(14): 1385–1402. https://doi.org/10.1016/S1364-6826(98)00062-5. [CrossRef] [Google Scholar]
- Saryo T, Takeda M, Araki T, Sato T, Tsuda T, Fukao S, Kato S. 1989. A midday bite-out event of the F2-layer observed by MU radar. J Geomagn Geoelectr 41(8): 727–734. https://doi.org/10.5636/jgg.41.727. [CrossRef] [Google Scholar]
- Sezen UMUT, Arikan FEZA, Arikan O, Ugurlu O, Sadeghimorad A. 2013. Online, automatic, near-real time estimation of GPS-TEC: IONOLAB-TEC. Space Weather 11(5): 297–305. https://doi.org/10.1002/swe.20054. [CrossRef] [Google Scholar]
- Venkatesh K, Fagundes PR, de Abreu AJ, Pillat VG. 2016. Unusual noon-time bite-outs in the ionospheric electron density around the anomaly crest locations over the Indian and Brazilian sectors during quiet conditions – A case study. J Atmos Sol Terr Phys 147: 126–137. https://doi.org/10.1016/j.jastp.2016.07.016. [CrossRef] [Google Scholar]
- Wang Y, Huang F, Lei J, Luan X, Dou X. 2021. Ionospheric diurnal double-maxima patterns observed by the TEC from Beidou Geostationary Satellites in the Asian-Australian Sector during 2016–2018. J Geophys Res Space Phys 126(1): e2020JA028578. https://doi.org/10.1029/2020JA028578. [Google Scholar]
- Wang R, Chen P, Yao Y, An Z, Wang Z. 2022. Research on the ionospheric diurnal double-maxima patterns in Asia-Australian area based on the VTEC observations of BDS geostationary satellites. Adv Space Res 69(10): 3705–3716. https://doi.org/10.1016/j.asr.2022.02.041. [CrossRef] [Google Scholar]
- Yu T, Wan WX, Liu LB, Tang W, Luan XL, Yang GL. 2006. Analysis of global TEC annual and semi-annual variations by using IGS data. Chinese J Geophys 49(4): 841–847. https://doi.org/10.1002/cjg2.903. [CrossRef] [Google Scholar]
- Yang N, Le H, Liu L. 2015. Statistical analysis of ionospheric mid-latitude trough over the Northern Hemisphere derived from GPS total electron content data. Earth Planets Space 67(1): 1–11. https://doi.org/10.1186/s40623-015-0365-1. [CrossRef] [Google Scholar]
- Zhang SR, Oliver WL, Fukao S, Otsuka Y. 2000. A study of the forenoon ionospheric F2 layer behavior over the middle and upper atmospheric radar. J Geophys Res Space Phys 105(A7): 15823–15833. https://doi.org/10.1029/2000JA000007. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.