Issue |
J. Space Weather Space Clim.
Volume 12, 2022
Topical Issue - Ionospheric plasma irregularities and their impact on radio systems
|
|
---|---|---|
Article Number | 25 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/swsc/2022024 | |
Published online | 01 July 2022 |
- Aa E, Huang W, Liu S, Shi L, Gong J, Chen Y, Shen H. 2015. A regional ionospheric TEC mapping technique over China and adjacent areas: GNSS data processing and DINEOF analysis. Sci China Inf Sci 58(10): 1–11. https://doi.org/10.1007/s11432-015-5399-2. [Google Scholar]
- Abadi P, Saito S, Srigutomo W. 2014. Low-latitude scintillation occurrences around the equatorial anomaly crest over Indonesia. Ann Geophys 32: 7–17. https://doi.org/10.5194/angeo-32-7-2014. [CrossRef] [Google Scholar]
- Abdu MA. 2012. Equatorial spread F/plasma bubble irregularities under storm time disturbance electric fields. J Atmos Solar Terr Phys 75–76: 44–56. https://doi.org/10.1016/j.jastp.2011.04.024. [CrossRef] [Google Scholar]
- Abdu MA. 2019. Day-to-day and short-term variabilities in the equatorial plasma bubble/spread F irregularity seeding and development. Prog Earth Planet Sci 6: 11. https://doi.org/10.1186/s40645-019-0258-1. [CrossRef] [Google Scholar]
- Alfonsi L, Spogli L, Pezzopane M, Romano V, Zuccheretti E, De Franceschi G, Cabrera MA, Ezquer RG. 2013. Comparative analysis of spread-F signature and GPS scintillation occurrences at Tucumán, Argentina. J Geophys Res Space Phys 118: 4483–4502. https://doi.org/10.1002/jgra.50378. [CrossRef] [Google Scholar]
- Anderson D, Anghel A, Yumoto K, Ishitsuka M, Kudeki E. 2002. Estimating daytime vertical ExB drift velocities in the equatorial F-region using ground-based magnetometer observations. Geophys Res Lett 29(12): 1596. https://doi.org/10.1029/2001GL014562. [CrossRef] [Google Scholar]
- Balan N, Maruyama T, Patra AK, Narayanan VL. 2018. A minimum in the latitude variation of spread-F at March equinox. Prog Earth Planet Sci 5: 27. https://doi.org/10.1186/s40645-018-0180-y. [CrossRef] [Google Scholar]
- Basu S, Mackenzie E, Basu S. 1988. Ionospheric constraints on VHF/UHF communication links during solar maximum and minimum periods. Radio Sci 23: 363–372. [CrossRef] [Google Scholar]
- Beutler G, Rothacher M, Schaer S, Springer TA, Kouba J, Neilan RE. 1999. The International GPS Service (IGS): An interdisciplinary service in support of Earth sciences. Adv Space Res 23: 631–635. https://doi.org/10.1016/S0273-1177(99)00160-X. [CrossRef] [Google Scholar]
- Buhari SM, Abdullah M, Yokoyama T, Otsuka Y, Nishioka M, Hasbi AM, Bahari SA, Tsugawa T. 2017. Climatology of successive equatorial plasma bubbles observed by GPS ROTI over Malaysia. J Geophys Res Space Phys 122(2): 2174–2184. [CrossRef] [Google Scholar]
- Cheng K, Huang Y-N. 1992. Ionospheric disturbances observed during the period of Mount Pinatubo eruptions in June 1991. J Geophys Res 97(A11): 16995–17004. https://doi.org/10.1029/92JA01462. [CrossRef] [Google Scholar]
- D’Angelo G, Piersanti M, Diego P, Pezzopane M, Ubertini P. 2021. Analysis of the August 14, 2018 plasma bubble by CSES-01 satellite. Il nuovo cimento C 44(4–5): 1–4. https://doi.org/10.1393/ncc/i2021-21118-2. [Google Scholar]
- Demyanov VV, Yasyukevich YV, Ishin AB, Astafyeva EI. 2012. Ionospheric super-bubble effects on the GPS positioning relative to the orientation of signal path and geomagnetic field direction. GPS Solu 16(2): 181–189. https://doi.org/10.1007/s10291-011-0217-9. [CrossRef] [Google Scholar]
- Harding BJ, Wu YJ, Alken P, Yamazaki Y, Triplett CC, Immel TJ, Gasque LC, Mende SB, Xiong C. 2022. Impacts of the January 2022 Tonga volcanic eruption on the ionospheric dynamo: ICON-MIGHTI and Swarm observations of extreme neutral winds and currents. Geophys Res Lett 49: e2022GL098577. https://doi.org/10.1029/2022GL098577. [CrossRef] [Google Scholar]
- Hoffmann L, Xue X, Alexander MJ. 2013. A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations. J Geophys Res Atmos 118: 416–434. https://doi.org/10.1029/2012JD018658. [CrossRef] [Google Scholar]
- Fejer BG, Souza JR, Santos AS, Costa Pereira AE. 2005. Climatology of F region zonal plasma drifts over Jicamarca. J Geophys Res 110: A12310. https://doi.org/10.1029/2005JA011324. [CrossRef] [Google Scholar]
- Friis-Christensen E, Lühr H, Knudsen D, Haagmans R. 2008. Swarm-an earth observation mission investigating geospace. Adv Space Res 41(1): 210–216. https://doi.org/10.1016/j.asr.2006.10.008. [CrossRef] [Google Scholar]
- Katamzi ZT, Habarulema JB, Hernández-Pajares M. 2017. Midlatitude postsunset plasma bubbles observed over Europe during intense storms in April 2000 and 2001. Space Weather 15: 1177–1190. https://doi.org/10.1002/2017SW001674. [CrossRef] [Google Scholar]
- Kelley MC. 2009. The Earth’s ionosphere: plasma physics and electrodynamics. In: International Geophysics Series, vol. 43, Academic Press, San Diego. [Google Scholar]
- Keskinen MJ, Ossakow SL, Fejer BG. 2003. Three-dimensional nonlinear evolution of equatorial ionospheric spread-F bubbles. Geophys Res Lett 30(16): 1855. https://doi.org/10.1029/2003GL017418. [CrossRef] [Google Scholar]
- Li G, Ning B, Wang C, Abdu MA, Otsuka Y, Yamamoto M, Wu J, Chen J. 2018. Storm-enhanced development of postsunset equatorial plasma bubbles around the meridian 120 E/60 W on 7–8 September 2017. J Geophys Res Space Phys 123: 7985–7998. https://doi.org/10.1029/2018JA025871. [CrossRef] [Google Scholar]
- Li G, Ning B, Zhao X, Sun W, Hu L, Xie H, Liu K, Ajith KK. 2019. Low latitude ionospheric TEC oscillations associated with periodic changes in IMF Bz polarity. Geophys Res Lett 46: 9379–9387. https://doi.org/10.1029/2019GL084428. [CrossRef] [Google Scholar]
- Li G, Ning B, Otsuka Y, Abdu M, Abadi P, Liu Z, Spogli L, Wan W. 2021. Challenges to equatorial plasma bubble and ionospheric scintillation short-term forecasting and future aspects in east and southeast Asia. Surv Geophys 42: 201–238. https://doi.org/10.1007/s10712-020-09613-5. [CrossRef] [Google Scholar]
- Lin JT, Rajesh PK, Lin CC, Chou MY, Liu JY, Yue J, Hsiao TY, Tsai HF, Chao HM, Kung MM. 2022. Rapid conjugate appearance of the giant ionospheric lamb wave signatures in the Northern Hemisphere after Hunga-Tonga Volcano Eruptions. Geophys Res Lett 49: e2022GL098222. https://doi.org/10.1029/2022GL09822. [Google Scholar]
- Ma G, Maruyama T. 2006. A super bubble detected by dense GPS network at East Asian longitudes. Geophys Res Lett 33: L21103. https://doi.org/10.1029/2006GL027512. [CrossRef] [Google Scholar]
- Muella MT, Duarte-Silva MH, Moraes AO, de Paula ER, de Rezende LF, Alfonsi L, Affonso BJ. 2017. Climatology and modeling of ionospheric scintillations and irregularity zonal drifts at the equatorial anomaly crest region. Ann Geophys 35: 1201–1218. https://doi.org/10.5194/angeo-35-1201-2017. [CrossRef] [Google Scholar]
- Otsuka Y, Shiokawa K, Ogawa T, Wilkinson P. 2002. Geomagnetic conjugate observations of equatorial airglow depletions. Geophys Res Lett; 29: 43. https://doi.org/10.1029/2002gl015347. [Google Scholar]
- Pi X, Mannucci AJ, Lindqwister UJ, Ho CM. 1997. Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophys Res Lett 24(18): 2283–2286. https://doi.org/10.1029/97gl02273. [Google Scholar]
- Piersanti M, Pezzopane M, Zhima Z, Diego P, Xiong C, et al. 2020. Can an impulsive variation of the solar wind plasma pressure trigger a plasma bubble? A case study based on CSES, Swarm and THEMIS data Adv Space Res 67: 35–45. https://doi.org/10.1016/j.asr.2020.07.046. [Google Scholar]
- Seo J, Walter T, Chiou T-Y, Enge P. 2009. Characteristics of deep GPS signal fading due to ionospheric scintillation for aviation receiver design. Radio Sci 44: RS0A16. https://doi.org/10.1029/2008rs004077. [Google Scholar]
- Schmidt A, Witham CS, Theys N, Richards NA, Thordarson T, et al. 2014. Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions. J Geophys Res Atmos 119: 14180–14196. https://doi.org/10.1002/2014JD022070. [Google Scholar]
- Shi JK, Wang GJ, Reinisch BW, Shang SP, Wang X, Zherebotsov G, Potekhin A. 2011. Relationship between strong range spread F and ionospheric scintillations observed in Hainan from 2003 to 2007. J Geophys Res 116: A08306. https://doi.org/10.1029/2011JA0168 06. [Google Scholar]
- Sun W, Wu B, Wu Z, Hu L, Zhao X, Zheng J, Xie H, Yang S, Ning B, Li G. 2020. IONISE: An ionospheric observational network for irregularity and scintillation in East and Southeast Asia. J Geophys Res Space Phys 125: e2020JA028055. https://doi.org/10.1029/2020JA028055. [Google Scholar]
- Takahashi H, Wrasse CM, Figueiredo CAOB, Barros D, Abdu MA, Otsuka Y, Shiokawa K. 2018. Equatorial plasma bubble seeding by MSTIDs in the ionosphere. Prog Earth Planet Sci 5: 32. https://doi.org/10.1186/s40645-018-0189-2. [CrossRef] [Google Scholar]
- Wang C. 2010. New chains of space weather monitoring stations in China. Space Weather 8: S08001. https://doi.org/10.1029/2010SW000603. [Google Scholar]
- Xiong B, Wan W, Yu Y, Hu L. 2016. Investigation of ionospheric TEC over China based on GNSS data. Adv Space Res 58(6): 867–877. https://doi.org/10.1016/j.asr.2016.05.033. [CrossRef] [Google Scholar]
- Xiong C, Lühr H, Sun L, Luo W, Park J, Hong Y. 2019. Long-lasting latitudinal four-peak structure in the nighttime ionosphere observed by the Swarm constellation. J Geophys Res Space Phys 124: 9335–9347. https://doi. org/10.1029/2019JA027096. [CrossRef] [Google Scholar]
- Zhang SR, Vierinen J, Aa E, Goncharenko LP, Erickson PJ, Rideout W, Coster AJ, Spicher A. 2022. 2022 Tonga volcanic eruption induced global propagation of ionospheric disturbances via Lamb waves. Front Astron Space Sci 9: 871275. https://doi.org/10.3389/fspas.2022.871275. [CrossRef] [Google Scholar]
- Zhao X, Xie H, Hu L, Sun W, Hao X, Ning B, Takahashi H, Li G. 2021. Climatology of equatorial and low-latitude F region kilometer-scale irregularities over the meridian circle around 120 E/60 W. GPS Solu 25(1): 1–14. https://doi.org/10.1007/s10291-020-01054-2. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.