Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 24 | |
Number of page(s) | 24 | |
DOI | https://doi.org/10.1051/swsc/2022019 | |
Published online | 28 June 2022 |
- Anastasiadis A, Papaioannou A, Sandberg I, Georgoulis M, Tziotziou K, Kouloumvakos A, Jiggens P. 2017. Predicting flares and solar energetic particle events: The FORSPEF tool. Sol Phys 292(9): 1–21. https://doi.org/10.1007/s11207-017-1163-7. [CrossRef] [Google Scholar]
- Anastasiadis A, Lario D, Papaioannou A, Kouloumvakos A, Vourlidas A. 2019. Solar energetic particles in the inner heliosphere: Status and open questions. Philos Trans R Soc A 377(2148): 1–19. https://doi.org/10.1098/rsta.2018.0100. [Google Scholar]
- Arregui I. 2022. Recent applications of Bayesian methods to the solar corona. Front Astron Space Sci 9 : 29. https://doi.org/10.3389/fspas.2022.826947. [CrossRef] [Google Scholar]
- Aschwanden MJ. 2002. Particle acceleration and kinematics in solar flares-A synthesis of recent observations and theoretical concepts (Invited Review). Space Sci Rev 101(1–2): 1–227. https://doi.org/10.1023/A:1019712124366 [CrossRef] [Google Scholar]
- Asvestari E, Willamo T, Gil A, Usoskin I, Kovaltsov G, Mikhailov V, Mayorov A. 2017. Analysis of ground level enhancements (GLE): Extreme solar energetic particle events have hard spectra. Adv Space Res 60(4): 781–787. https://doi.org/10.1016/j.asr.2016.08.043. [CrossRef] [Google Scholar]
- Azzam EI, Jay-Gerin J-P, Pain D. 2012. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 327(1–2): 48–60. https://doi.org/10.1016/j.canlet.2011.12.012. [CrossRef] [Google Scholar]
- Baker DN. 2004. Specifying and forecasting space weather threats to human technology. In: Effects of space weather on technology infrastructure, NATO Science Series II: Mathematics, Physics and Chemistry , Daglis I (Ed.), Springer, Dordrecht, pp. 1–25. https://doi.org/10.1007/1-4020-2754-0_1. [Google Scholar]
- Balch CC. 2008. Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model. Space Weather 6(1):1–13. https://doi.org/10.1029/2007SW000337. [Google Scholar]
- Bayes M, Price M. 1763. An essay towards solving a problem in the doctrine of chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S.. Philos Trans R Soc Lond Ser I 53 : 370–418. [Google Scholar]
- Belov A, Garcia H, Kurt V, Mavromichalaki H, Gerontidou M. 2005. Proton enhancements and their relation to the X-ray flares during the three last solar cycles. Sol Phys 229(1): 135–159. https://doi.org/10.1007/s11207-005-4721-3. [CrossRef] [Google Scholar]
- Bizzarri M, Masiello MG, Guzzi R, Cucina A. 2017. Journey to Mars: A biomedical challenge. Perspective on future human space flight. Organisms. J Biol Sci 1(2): 15–26. https://doi.org/10.13133/2532-5876/14197. [Google Scholar]
- Brueckner G, Howard R, Koomen M, Korendyke C, Michels D, et al. 1995. The large angle spectroscopic coronagraph (LASCO). Sol Phys 162(1–2): 357–402. https://doi.org/10.1007/BF00733434. [CrossRef] [Google Scholar]
- Butikofer R, Fliickiger EO, Desorgher L, Moser MR, Pirard B. 2009. The solar cosmic ray ground- level enhancements on 20 January 2005 and 13 December 2006. Adv Space Res 43(4): 499–503. https://doi.org/10.1016Zj.asr.2008.08.001. [CrossRef] [Google Scholar]
- Byrne JP, Morgan H, Habbal SR, Gallagher PT. 2012. Automatic detection and tracking of coronal mass ejections. II. Multiscale filtering of coronagraph images. ApJ 752(2): 145. https://doi.org/10.1088/0004-637X/752/2/145, arXiv:1207.6125. [CrossRef] [Google Scholar]
- Camporeale E. 2019. The challenge of machine learning in space weather: Nowcasting and forecasting. Space Weather 17(8): 1166–1207. https://doi.org/10.1029/2018SW002061, arXiv:1903.05192. [Google Scholar]
- Cane H, Lario D. 2006. An introduction to CMEs and energetic particles. Space Sci Rev 123(1–3): 45–56. https://doi.org/10.1007/s11214-006-9011-3. [CrossRef] [Google Scholar]
- Cane H, Richardson I, von Rosenvinge T. 2010. A study of solar energetic particle events of 1997–2006: Their composition and associations. J Geophys Res: Space Phys 115(A8): 1–18. https://doi.org/10.1029/2009JA014848. [Google Scholar]
- Cliver EW, Ling AG, Belov A, Yashiro S. 2012. Size distributions of solar flares and solar energetic particle events. ApJ 756(2): L29. https://doi.org/10.1088/2041-8205/756/2/L29. [CrossRef] [Google Scholar]
- Cucinotta FA, Wu H, Shavers MR, George K. 2003. Radiation dosimetry and biophysical models of space radiation effects. Gravit Space Biol 16(2): 11–19. [Google Scholar]
- Daly E, Drolshagen G, Hilgers A, Evans H. 1996. Space environment analysis: Experience and trends. In: Environment Modelling for Space-based Applications, Symposium Proceedings (ESA SP-392) , Vol. 392 , 18–20 September 1996, Burke W, Guyenne T-D (Eds.), ESTEC, Noordwijk, 15 p. [Google Scholar]
- Desai M, Giacalone J. 2016. Large gradual solar energetic particle events. Living Rev Sol Phys 13(1): 3. https://doi.org/10.1007/s41116-016-0002-5. [CrossRef] [Google Scholar]
- Dierckxsens M, Tziotziou K, Dalla S, Patsou I, Marsh M, Crosby N, Malandraki O, Tsiropoula G. 2015. Relationship between solar energetic particles and properties of flares and CMEs: Statistical analysis of solar cycle 23 events. Sol Phys 290(3): 841–874. https://doi.org/10.1007/s11207-014-0641-4. [CrossRef] [Google Scholar]
- Feynman J, Gabriel S. 2000. On space weather consequences and predictions. J Geophys Res: Space Phys 105(A5): 10,543–10,564. https://doi.org/10.1029/1999JA000141. [Google Scholar]
- Garcia H. 2004a. Forecasting methods for occurrence and magnitude of proton storms with solar hard X rays. Space Weather 2(6): 1–10. https://doi.org/10.1029/2003SW000035. [CrossRef] [Google Scholar]
- Garcia H. 2004b. Forecasting methods for occurrence and magnitude of proton storms with solar soft X rays. Space Weather 2(2): 1–10 https://doi.org/10.1029/2003SW000001. [CrossRef] [Google Scholar]
- Gopalswamy N, Yashiro S, Lara A, Kaiser M, Thompson B, Gallagher P, Howard R. 2003. Large solar energetic particle events of cycle 23: A global view. Geophys Res Lett 30(12): 1–4. https://doi.org/10.1029/2002GL016435. [Google Scholar]
- Gopalswamy N, Yashiro S, Krucker S, Stenborg G, Howard RA. 2004. Intensity variation of large solar energetic particle events associated with coronal mass ejections. J Geophys Res: Space Phys 109(A12): 1–18. https://doi.org/10.1029/2004JA010602. [CrossRef] [Google Scholar]
- Gopalswamy N, Yashiro S, Michalek G, Stenborg G, Vourlidas A, Freeland S, Howard R. 2009. The SOHO/LASCO CME catalog. Earth Moon Planets 104(1–4): 295–313. https://doi.org/10.1007/s11038-008-9282-7. [NASA ADS] [CrossRef] [Google Scholar]
- Harboe-Sørensen R. 2013. 40 years of radiation single event effects at the european space agency, ESTEC. IEEE Trans Nucl Sci 60(3): 1816–1823. https://doi.org/10.1109/TNS.2013.2247630. [CrossRef] [Google Scholar]
- Hartigan JA. 2012. Bayes theory , Springer Science & Business Media, Berlin, Germany. [Google Scholar]
- Jiggens P, Heynderickx D, Sandberg I, Truscott P, Raukunen O, Vainio R. 2018. Updated model of the solar energetic proton environment in space. J Space Weather Space Clim 8 : A31. https://doi.org/10.1051/swsc/2018010. [CrossRef] [EDP Sciences] [Google Scholar]
- Jiggens P, Clavie C, Evans H, O’Brien T, Witasse O, et al. 2019. In situ data and effect correlation during September 2017 solar particle event. Space Weather 17(1): 99–117. https://doi.org/10.1029/2018SW001936. [CrossRef] [Google Scholar]
- Joyce JM. 1999. The foundations of causal decision theory , Cambridge University Press, Cambridge, UK. [CrossRef] [Google Scholar]
- Kahler S. 2001. The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: Effects of ambient particle intensities and energy spectra. J Geophys Res: Space Phys 106(A10): 20947–20955. https://doi.org/10.1029/2000JA002231. [CrossRef] [Google Scholar]
- Kahler SW, Ling AG. 2018. Forecasting solar energetic particle (SEP) events with flare X-ray peak ratios. J Space Weather Space Clim 8 : A47. https://doi.org/10.1051/swsc/2018033. [CrossRef] [EDP Sciences] [Google Scholar]
- Lario D, Kwon R-Y, Vourlidas A, Raouafi N, Haggerty D, et al. 2016. Longitudinal properties of a widespread solar energetic particle event on 2014 February 25: Evolution of the associated CME shock. Astrophys J 819(1): 72. https://doi.org/10.3847/0004-637X/819/1/72. [CrossRef] [Google Scholar]
- Laurenza M, Cliver EW, Hewitt J, Storini M, Ling A, Balch C, Kaiser M. 2009. A technique for shortterm warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather 7(4): 1–18. https://doi.org/10.1029/2007SW000379. [Google Scholar]
- Laurenza M, Alberti T, Cliver E. 2018. A short-term ESPERTA-based forecast tool for moderate-to- extreme solar proton events. Astrophys J 857(2): 107. https://doi.org/10.3847/1538-4357/aab712. [CrossRef] [Google Scholar]
- Lavasa E, Giannopoulos G, Papaioannou A, Anastasiadis A, Daglis I, Aran A, Pacheco D, Sanahuja B. 2021. Assessing the predictability of solar energetic particles with the use of machine learning techniques. Sol Phys 296(7): 1–47. https://doi.org/10.1007/s11207-021-01837-x. [CrossRef] [Google Scholar]
- Maritz JS, Lwin T. 2018. Empirical Bayes methods , Routledge, England, UK. [CrossRef] [Google Scholar]
- Mironova I, Usoskin I. 2014. Possible effect of strong solar energetic particle events on polar stratospheric aerosol: A summary of observational results. Environ Res Lett 9(1): 015, 002. https://doi.org/10.5194/acp-13-8543-2013. [Google Scholar]
- Miroshnichenko LI. 2018. Retrospective analysis of GLEs and estimates of radiation risks. J Space Weather Space Clim 8 : A52. https://doi.org/10.1051/swsc/2018042. [CrossRef] [EDP Sciences] [Google Scholar]
- Mishev A, Adibpour F, Usoskin I, Felsberger E. 2015. Computation of dose rate at flight altitudes during ground level enhancements no. 69, 70 and 71. Adv Space Res 55(1): 354–362. https://doi.org/10.1016Zj.asr.2014.06.020. [CrossRef] [Google Scholar]
- Mishev A, Poluianov S, Usoskin I. 2017. Assessment of spectral and angular characteristics of sub-GLE events using the global neutron monitor network. J Space Weather Space Clim 7 : A28. https://doi.org/10.1051/swsc/2017026. [CrossRef] [EDP Sciences] [Google Scholar]
- Mishev A, Usoskin I, Raukunen O, Paassilta M, Valtonen E, Kocharov L, Vainio R. 2018. First analysis of ground-level enhancement (GLE) 72 on 10 September 2017: Spectral and anisotropy characteristics. Sol Phys 293(10): 1–15. https://doi.org/10.1007/s11207-018-1354-x. [CrossRef] [Google Scholar]
- Núñez M. 2011. Predicting solar energetic proton events (E > 10 MeV). Space Weather 9(7): 1–28. https://doi.org/10.1029/2010SW000640. [Google Scholar]
- Olmedo O, Zhang J, Wechsler H, Poland A, Borne K. 2008. Automatic detection and tracking of coronal mass ejections in coronagraph time series. Sol Phys 248(2): 485–499. https://doi.org/10.1007/s11207-007-9104-5. [CrossRef] [Google Scholar]
- Papaioannou A, Sandberg I, Anastasiadis A, Kouloumvakos A, Georgoulis MK, Tziotziou K, Tsiropoula G, Jiggens P, Hilgers A. 2016. Solar flares, coronal mass ejections and solar energetic particle event characteristics. J Space Weather Space Clim 6 : A42. https://doi.org/10.1051/swsc/2016035. [CrossRef] [EDP Sciences] [Google Scholar]
- Papaioannou A, Anastasiadis A, Kouloumvakos A, Paassilta M, Vainio R, Valtonen E, Belov A, Eroshenko E, Abunina M, Abunin A. 2018a. Nowcasting solar energetic particle events using principal component analysis. Sol Phys 293(7): 1–23. https://doi.org/10.1007/s11207-018-1320-7. [CrossRef] [Google Scholar]
- Papaioannou A, Anastasiadis A, Sandberg I, Jiggens P. 2018b. Nowcasting of solar energetic particle events using near real-time coronal mass ejection characteristics in the framework of the FORSPEF tool. J Space Weather Space Clim 8 : A37. https://doi.org/10.1051/swsc/2018024. [CrossRef] [EDP Sciences] [Google Scholar]
- Pellish JA, Xapsos MA, Stauffer CA, Jordan TM, Sanders AB, Ladbury RL, Oldham TR, Marshall PW, Heidel DF, Rodbell KP. 2010. Impact of spacecraft shielding on direct ionization soft error rates for sub-130 nm technologies. IEEE Trans Nucl Sci 57(6): 3183–3189. [Google Scholar]
- Posner A. 2007. Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather 5(5): 1–28. https://doi.org/10.1029/2006SW000268. [Google Scholar]
- Raukunen O, Vainio R, Tylka AJ, Dietrich WF, Jiggens P, Heynderickx D, Dierckxsens M, Crosby N, Ganse U, Siipola R. 2018. Two solar proton fluence models based on ground level enhancement observations. J Space Weather Space Clim 8 : A04. https://doi.org/10.1051/swsc/2017031. [CrossRef] [EDP Sciences] [Google Scholar]
- Reames DV. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90(3–4): 413–491. https://doi.org/10.1023/A:1005105831781. [CrossRef] [Google Scholar]
- Reames DV. 2002. Magnetic topology of impulsive and gradual solar energetic particle events. Astrophys J Lett 571(1): L63. https://doi.org/10.1086/341149. [CrossRef] [Google Scholar]
- Reames DV. 2013. The two sources of solar energetic particles. Space Sci Rev 175(1–4): 53–92. https://doi.org/10.1007/s11214-013-9958-9, arXiv:1306.3608. [CrossRef] [Google Scholar]
- Reames DV. 2015. What are the sources of solar energetic particles? Element abundances and source plasma temperatures. Space Sci Rev 194(1–4): 303–327. https://doi.org/10.1007/s11214-015-0210-7. [CrossRef] [Google Scholar]
- Richardson IG, von Rosenvinge TT, Cane HV. 2015. The properties of solar energetic particle event-associated coronal mass ejections reported in different CME catalogs. Sol Phys 290(6): 1741–1759. https://doi.org/10.1007/s11207-015-0701-4, arXiv:1505.03071. [CrossRef] [Google Scholar]
- Richardson I, Mays M, Thompson B. 2018. Prediction of solar energetic particle event peak proton intensity using a simple algorithm based on CME speed and direction and observations of associated solar phenomena. Space Weather 16(11): 1862–1881. https://doi.org/10.1029/2018SW002032. [CrossRef] [Google Scholar]
- Robbrecht E, Berghmans D. 2004. Automated recognition of coronal mass ejections (CMEs) in near- real-time data. A&A 425 : 1097–1106. https://doi.org/10.1051/0004-6361:20041302. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Rouillard A, Sheeley N, Tylka A, Vourlidas A, Ng C, et al. 2012. The longitudinal properties of a solar energetic particle event investigated using modern solar imaging. Astrophys J 752(1): 44. https://doi.org/10.1088/0004-637X/752/1/44. [CrossRef] [Google Scholar]
- Sandberg I, Jiggens P, Heynderickx D, Daglis I. 2014. Cross calibration of NOAA GOES solar proton detectors using corrected NASA IMP-8/GME data. Geophys Res Lett 41(13): 4435–4441. https://doi.org/10.1002/2014GL060469. [CrossRef] [Google Scholar]
- Sexton FW. 2003. Destructive single-event effects in semiconductor devices and ICs. IEEE Trans Nucl Sci 50(3): 603–621. https://doi.org/10.1109/TNS.2003.813137. [CrossRef] [Google Scholar]
- Stumpo M, Benella S, Laurenza M, Alberti T, Consolini G, Marcucci MF. 2021. Open issues in statistical forecasting of solar proton events: A machine learning perspective. Space Weather 19(10): e02794. https://doi.org/10.1029/2021SW002794. [CrossRef] [Google Scholar]
- Swalwell B, Dalla S, Walsh RW. 2017. Solar energetic particle forecasting algorithms and associated false alarms. Sol Phys 292(11): 173. https://doi.org/10.1007/s11207-017-1196-y, arXiv:1710.08156. [CrossRef] [Google Scholar]
- Thakur N, Gopalswamy N, Xie H, Makela P, Yashiro S, Akiyama S, Davila J. 2014. Ground level enhancement in the 2014 January 6 solar energetic particle event. Astrophys J Lett 790(1): L13. https://doi.org/10.1088/2041-8205/790/1/L13. [CrossRef] [Google Scholar]
- Tobiska WK, Atwell W, Beck P, Benton E, Copeland K, et al. 2015. Advances in atmospheric radiation measurements and modeling needed to improve air safety. Space Weather 13(4): 202–210. https://doi.org/10.1002/2015SW001169. [CrossRef] [Google Scholar]
- Townsend LW. 2021. Effects of space radiation on humans in space flight. In: Space Physics and Aeronomy Collection Volume 5: Space Weather Effects and Applications. Geophysical Monograph 262 , First Edition. Coster AJ, Erickson PJ, Lanzerotti LJ, (Eds.) American Geophysical Union, John Wiley & Sons. pp. 63–78. [Google Scholar]
- Townsend LW. 2021. Effects of space radiation on humans in space flight. Space Weather Eff Appl 5 : 63–78. https://doi.org/10.1002/9781119815570.ch3. [CrossRef] [Google Scholar]
- Trottet G, Samwel S, Klein K-L, de Wit TD, Miteva R. 2015. Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Sol Phys 290(3): 819–839. https://doi.org/10.1007/s11207-014-0628-1. [CrossRef] [Google Scholar]
- Usoskin I, Kovaltsov G, Mironova I, Tylka A, Dietrich W. 2011. Ionization effect of solar particle GLE events in low and middle atmosphere. Atmos Chem Phys 11(5): 1979–1988. https://doi.org/10.5194/acp-11-1979-2011. [CrossRef] [Google Scholar]
- Vainio R, Desorgher L, Heynderickx D, Storini M, Fluckiger E, et al. 2009. Dynamics of the Earth’s particle radiation environment. Space Sci Rev 147(3–4): 187–231. https://doi.org/10.1007/s11214-009-9496-7. [CrossRef] [Google Scholar]
- Vlahos L, Anastasiadis A, Papaioannou A, Kouloumvakos A, Isliker H. 2019. Sources of solar energetic particles. Philos Trans R Soc Lond Ser A 377(2148): 20180095. https://doi.org/10.1098/rsta.2018.0095, arXiv:1903.08200. [Google Scholar]
- Wheatland MS. 2004. A Bayesian approach to solar flare prediction. ApJ 609(2): 1134–1139. https://doi.org/10.1086/421261, arXiv:astro-ph/0403613. [CrossRef] [Google Scholar]
- Wheatland MS. 2005. A statistical solar flare forecast method. Space Weather 3(7): S07003. https://doi.org/10.1029/2004SW000131, arXiv:astro-ph/0505311. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.