Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 37 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/swsc/2022033 | |
Published online | 11 November 2022 |
- Aoyama Y, Doi K, Ikeda H, Hayakawa H, Shibuya K. 2016. Five years’ gravity observation with the superconducting gravimeter OSG#058 at Syowa Station, East Antarctica: Gravitational effects of accumulated snow mass. Geophys J Int 205(2): 1290–1304. https://doi.org/10.1093/gji/ggw078. [CrossRef] [Google Scholar]
- Brall T, Mares V, Butikofer R, Ruhm W. 2021. Assessment of neutrons from secondary cosmic rays at mountain altitudes – Geant4 simulations of environmental parameters including soil moisture and snow cover. Cryosphere 15: 4769–4780. https://doi.org/10.5194/tc-15-4769-2021. [CrossRef] [Google Scholar]
- Bütikofer R 2017. Ground-based measurements of energetic particles by neutron monitors. In: Solar particle radiation storms forecasting and analysis. Astrophysics and space science library, Malandraki O, Crosby N (Eds.), vol. 444, Springer, Cham. [Google Scholar]
- Cane HV, Wibberenz G, Richardson IG, von Rosenvinge TT. 1999. Cosmic ray modulation and the solar magnetic field. Geophys Res Lett 26(5): 565–568. https://doi.org/10.1029/1999GL900032. [CrossRef] [Google Scholar]
- Hatton CJ. 1971. The neutron monitor. In: Progress in elementary particle and cosmic-ray physics, Wilson JG, Wouthuysen SA (Eds.), Vol. 10, North Holland Publishing Co., Amsterdam. [Google Scholar]
- Jaeger H. 2001. The “echo state” approach to analysing and training recurrent neural networks, GMD Report 148. GMD – German National Research Institute for Computer Science. [Google Scholar]
- Kataoka R, Nakano S. 2021. Reconstructing solar wind profiles associated with extreme magnetic storms: A machine learning approach. Geophys Res Lett 48: e2021GL096275. https://doi.org/10.1029/2021GL096275. [CrossRef] [Google Scholar]
- Kataoka R, Sato T, Kubo Y, Shiota D, Kuwabara T, Yashiro S, Yasuda H. 2014. Radiation dose forecast of WASAVIES during ground level enhancement. Space Weather 12. https://doi.org/10.1002/2014SW001053. [Google Scholar]
- Kataoka R, Sato T, Miyake S, Shiota D, Kubo Y. 2018. Radiation dose nowcast for the ground level enhancement on 10–11 September 2017. Space Weather 16. https://doi.org/10.1029/2018SW001874. [Google Scholar]
- Kato C, Kihara W, Ko Y, Kadokura A, Kataoka R, Evenson P, Uchida S, Kaimi S, Nakamura Y, Uchida HA, Murase K, Munakata K. 2021. New cosmic ray observations at Syowa Station in the Antarctic for space weather study. J. Space Weather Space Clim. 11 (31) https://doi.org/10.1051/swsc/2021005. [Google Scholar]
- Kihara W, Munakata K, Kato C, Kataoka R, Kadokura A, Miyake S, et al. 2021. A peculiar ICME event in August 2018 observed with the global muon detector network. Space Weather 19: e2020SW002531. https://doi.org/10.1029/2020SW002531. [CrossRef] [Google Scholar]
- Koldobskiy SA, Kahkonen R, Hofer B, et al. 2022. Time lag between cosmic-ray and solar variability: Sunspot numbers and open solar magnetic flux. Sol Phys 297 (38). https://doi.org/10.1007/s11207-022-01970-1. [CrossRef] [Google Scholar]
- Miyake S, Kataoka R, Sato T. 2017. Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25. Space Weather 15(4): 589–605. https://doi.org/10.1002/2016SW001588. [Google Scholar]
- Murakami K, Nagashima K, Sagisaka S, et al. 1979. Response functions for cosmic-ray muons at various depths underground. Il Nuovo Cimento C 2: 635–651. https://doi.org/10.1007/BF02557762. [CrossRef] [Google Scholar]
- Mendonsa R, et al. 2016. The temperature effect in secondary cosmic rays (MUONS) observed at the ground: analysis of the global muon detector network data. Astrophys J 830(2): 88–112. https://iopscience.iop.org/article/10.3847/0004-637X/830/2/88. [CrossRef] [Google Scholar]
- Nagashima K, Morishita I. 1980. Twenty-two year modulation of galactic cosmic rays associated with polarity reversal of polar magnetic field of the sun. Planet Space Sci 28: 195–205. https://doi.org/10.1016/0032-0633(80)90095-1. [CrossRef] [Google Scholar]
- Nagashima K, Sakakibara S, Murakami K, et al. 1989. Response and yield functions of neutron monitor, galactic cosmic-ray spectrum and its solar modulation, derived from all the available world-wide surveys. Il Nuovo Cimento C 12: 173–209. https://doi.org/10.1007/BF02523790. [CrossRef] [Google Scholar]
- Ruffolo D, et al. 2016. Monitoring short-term cosmic-ray spectral variations using neutron monitor time-delay measurements. ApJ 816: 38. https://doi.org/10.3847/0004-637X/817/1/38. [CrossRef] [Google Scholar]
- Sato T. 2015. Analytical model for estimating terrestrial cosmic ray fluxes nearly anytime and anywhere in the world: Extension of PARMA/EXPACS. PLoS One 10(12): e0144679. https://doi.org/10.1371/journal.pone.0144679. [CrossRef] [Google Scholar]
- Sato T. 2016. Analytical model for estimating the zenith angle dependence of terrestrial cosmic ray fluxes. PloS one 11(8): e0160390. https://doi.org/10.1371/journal.pone.0160390. [CrossRef] [Google Scholar]
- Sato T, Niita K. 2006. Analytical function to predict cosmic-ray neutron spectrum in the atmosphere. Radiat Res 166: 544–555. https://doi.org/10.1667/RR0610.1. [CrossRef] [Google Scholar]
- Sato T, Kataoka R, Yasuda H, Seiji Y, Kuwabara T, Shiota D, Kubo Y. 2014. Air shower simulation for WASAVIES: Warning system for aviation exposure to solar energetic particles. Radiat Prot Dosim 161: 274–278. https://doi.org/10.1093/rpd/nct332. [CrossRef] [Google Scholar]
- Sato T, Kataoka R, Shiota D, Kubo Y, Ishii M, Yasuda H, Miyake S, Park I, Miyoshi Y. 2018. Real-time and automatic analysis program for WASAVIES: Warning system of aviation exposure to solar energetic particles. Space Weather 16: 924–936. https://doi.org/10.1029/2018SW001873. [CrossRef] [Google Scholar]
- Strauss RD, Potgieter MS, Busching I, et al. 2012. Modelling heliospheric current sheet drift in stochastic cosmic ray transport models. Astrophys Space Sci 339: 223–236. https://doi.org/10.1007/s10509-012-1003-z. [CrossRef] [Google Scholar]
- Schron M, Zacharias S, Kohli M, Weimar J, Dietrich P. 2016. Monitoring environmental water with ground albedo neutrons from cosmic rays. In: Cosmic Ray Physics: Methods, Techniques and Instrumentation, vol. 236: Published on: August 18, 2016 https://doi.org/10.22323/1.236.0231. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.