Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 36 | |
Number of page(s) | 21 | |
DOI | https://doi.org/10.1051/swsc/2022031 | |
Published online | 21 October 2022 |
- Anza S, Armano M, Balaguer E, Benedetti M, Boatella C, et al. 2005. The LTP experiment on the LISA Pathfinder mission. Class Quantum Gravity 22(10): S125–S138. https://doi.org/10.1088/0264-9381/22/10/001. [CrossRef] [Google Scholar]
- Araújo HM, et al. 2005. Detailed calculation of test-mass charging in the LISA mission. Astr Phys 22: 451–469. [CrossRef] [Google Scholar]
- Araújo H, Boatella C, Chmeissani M, Conchillo A, García-Berro E, et al. 2007. LISA and LISA PathFinder, the endeavour to detect low frequency GWs. J Phys Conf Ser 66: 012003. https://doi.org/10.1088/1742-6596/66/1/012003. [CrossRef] [Google Scholar]
- Adriani O, Barbarino GC, Bazilevskaya GA, Bellotti R, Boezio M, et al. 2011. Observations of the 2006 December 13 and 14 solar particle events in the 80 MeV n−1–3 GeV n−1 range from space with the PAMELA detector. Astrophy J 742(2): 102. https://doi.org/10.1088/0004-637X/742/2/102. [CrossRef] [Google Scholar]
- Antonucci F, Armano M, Audley H, Auger G, Benedetti M, et al. 2011. LISA Pathfinder data analysis. Class Quantum Gravity 28(9): 094006. https://doi.org/10.1088/0264-9381/28/9/094006. [CrossRef] [Google Scholar]
- Antonucci F, Armano M, Audley H, Auger G, Benedetti M, et al. 2012. The LISA Pathfinder mission. Class Quantum Gravity 29(12): 124014. https://doi.org/10.1088/0264-9381/29/12/124014. [CrossRef] [Google Scholar]
- Armano M, Audley H, Auger G, Baird JT, Bassan M, et al. 2016. Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results. Phys Rev Lett 116(23): 231101. https://doi.org/10.1103/PhysRevLett.116.231101. [CrossRef] [Google Scholar]
- Amaro-Seoane P, Audley H, Babak S, Baker J, Barausse E, et al. 2017. Laser Interferometer Space Antenna. arXiv e-prints arXiv:1702.00786. [Google Scholar]
- Armano M, Audley H, Auger G, Baird JT, Binetruy P, et al. 2017. Charge-induced force noise on free-falling test masses: Results from LISA pathfinder 118(17): 171101. https://doi.org/10.1103/PhysRevLett.118.171101. [Google Scholar]
- Aguilar M, Ali Cavasonza L, Alpat B, Ambrosi G, Arruda L, et al. (AMS Collaboration). 2018. Observation of fine time structures in the cosmic proton and helium fluxes with the alpha magnetic spectrometer on the international space station. Phys Rev Lett 121: 051101. https://doi.org/10.1103/PhysRevLett.121.051101. [CrossRef] [Google Scholar]
- Anderson G, Anderson J, Anderson M, Aveni G, Bame D, et al. 2018. Experimental results from the ST7 mission on LISA, Pathfinder. Phys Rev D 98(10): 102005. https://doi.org/10.1103/PhysRevD.98.102005. [CrossRef] [Google Scholar]
- Armano M, Audley H, Baird J, Bassan M, Benella S, et al. 2018a. Characteristics and energy dependence of recurrent galactic cosmic-ray flux depressions and of a forbush decrease with LISA pathfinder. Astrophys J 854: 113. https://doi.org/10.3847/1538-4357/aaa774. [CrossRef] [Google Scholar]
- Armano M, Audley H, Baird J, Binetruy P, Born M, et al. 2018b. Beyond the required LISA free-fall performance: New LISA pathfinder results down to 20 μHz. Phys Rev Lett 120(6): 061101. https://doi.org/10.1103/PhysRevLett.120.061101. [CrossRef] [Google Scholar]
- Armano M, Audley H, Baird J, Benella S, Binetruy P, et al. 2019a. Forbush decreases and <2 day GCR flux non-recurrent variations studied with LISA pathfinder. Astrophys J 874(2): 167. https://doi.org/10.3847/1538-4357/ab0c99. [CrossRef] [Google Scholar]
- Armano M, Audley H, Baird J, Binetruy P, Born M, et al. 2019b. Temperature stability in the sub-milliHertz band with LISA pathfinder. Mon Notices Royal Astron Soc 486(3): 3368–3379. https://academic.oup.com/mnras/article-pdf/486/3/3368/55128536406/stz1017.pdf, https://doi.org/10.1093/mnras/stz1017. [CrossRef] [Google Scholar]
- Armano M, Audley H, Baird J, Binetruy P, Born M, et al. 2020. Spacecraft and interplanetary contributions to the magnetic environment on-board LISA Pathfinder. Mon Notices Royal Astron Soc 494(2): 3014–3027. https://doi.org/10.1093/mnras/staa830, https://academic.oup.com/546mnras/article-pdf/494/2/3014/33129159/staa830.pdf. [CrossRef] [Google Scholar]
- Burlaga LF, Lepping RP, Jones JA. 1990. Global configuration of a magnetic cloud. In: Washington DC American Geophysical Union Geophysical Monograph Series, vol. 58: pp. 373–377. https://doi.org/10.1029/GM058p0373. [Google Scholar]
- Cañizares P, Conchillo A, García-Berro E, Gesa L, Grimani C, et al. 2009. The diagnostics subsystem on board LISA Pathfinder and LISA. Class Quantum Gravity 26(9): 094005. https://doi.org/10.1088/0264-9381/26/9/094005. [CrossRef] [Google Scholar]
- Beravs T, Beguš S, Podobnik J, Munih M. 2014. Magnetometer calibration using kalman filter covariance matrix for online estimation of magnetic field orientation. IEEE Trans Instrum Meas 63(8): 2013–2020. https://doi.org/10.1109/TIM.2014.2302240. [CrossRef] [Google Scholar]
- Benella S, Laurenza M, Vainio R, Grimani C, Consolini G, Hu Q, Afanasiev A. 2020. A new method to model magnetic cloud-driven forbush decreases: The 2016 August 2 event. Astrophys J 901(1): 21. https://doi.org/10.3847/1538-4357/abac59. [CrossRef] [Google Scholar]
- Diego P, Laurenza M. 2021. Geomagnetic activity recurrences for predicting the amplitude and shape of solar cycle n. 25. J Space Weather Space Clim 11: 52.https://doi.org/10.1051/swsc/2021036. [CrossRef] [EDP Sciences] [Google Scholar]
- Diaz-Aguiló M, García-Berro E, Lobo A, Mateos N, Sanjuán J. 2010. The magnetic diagnostics subsystem of the LISA technology package. J Phys Conf Ser 228: https://doi.org/10.1088/1742-6596/228/1/012038. [Google Scholar]
- Diego P, Storini M, Laurenza M. 2010. Persistence in recurrent geomagnetic activity and its connection with space climate. J Geophys Res Space Phys 115(A6): A06103. https://doi.org/10.1029/2009JA014716. [Google Scholar]
- Desorgher L, Hajdas W, Britvitch I, Egli K, Guo X, et al. 2013. ESA next generation radiation monitor. In: 2013 14th European Conference on Radiation and Its Effects on Components and Systems (RADECS), pp. 1–5. [Google Scholar]
- Forbush SE. 1937. On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys Rev 51(12): 1108–1109. https://doi.org/10.1103/PhysRev.51.1108.3. [CrossRef] [Google Scholar]
- Forbush SE. 1954. World-wide cosmic-ray variations, 1937–1952. J Geophys Res 59(4): 525–542. https://doi.org/10.1029/JZ059i004p00525. [CrossRef] [Google Scholar]
- Forbush SE. 1958. Cosmic-ray intensity variations during two solar cycles. J Geophys Res 63(4): 651–669. https://doi.org/10.1029/JZ063i004p00651. [CrossRef] [Google Scholar]
- Gleeson LJ, Axford WI. 1968. Solar modulation of galactic cosmic rays. Astrophys J 154: 1011–1026. [CrossRef] [Google Scholar]
- Grimani C, Fabi M, Finetti N, Tombolato D. 2009a. The role of interplanetary electrons at the time of the LISA missions. Class Quantum Gravity 26(21): 215004. https://doi.org/10.1088/0264-9381/26/21/215004. [CrossRef] [Google Scholar]
- Grimani C, Fabi M, Finetti N, Tombolato D, Marconi L, Stanga R, Lobo A, Chmeissani M, Puigdengoles C. 2009b. Heliospheric influences on LISA. Class Quantum Gravity 26: 094018. https://doi.org/10.1088/0264-9381/26/9/094018. [CrossRef] [Google Scholar]
- Grimani C, Boatella C, Chmeissani M, Fabi M, Finetti N, et al. 2012. On the role of radiation monitors on board LISA Pathfinder and future space interferometers. Class Quantum Gravity 29: 105001. https://doi.org/10.1088/0264-9381/29/10/105001. [CrossRef] [Google Scholar]
- Grimani C, Fabi M, Lobo A, Mateos I, Telloni D. 2015. LISA Pathfinder test-mass charging during galactic cosmic-ray flux short-term variations. Class Quantum Gravity 32(3): 035001. https://doi.org/10.1088/0264-9381/32/3/035001. [CrossRef] [Google Scholar]
- Gil A, Asvestari E, Kovaltsov G, Usoskin I. 2017. Heliospheric modulation of galactic cosmic rays: Effective energy of ground-based detectors. In: 35th International Cosmic Ray Conference (ICRC2017), 301, 32p. [Google Scholar]
- Grimani C, LISA Pathfinder Collaboration, Benella S, Fabi M, Finetti N, Telloni D. 2017. GCR flux 9-day variations with LISA Pathfinder. J Phys Conf Ser 840: 012037. https://doi.org/10.1088/1742-6596/840/1/012037. [CrossRef] [Google Scholar]
- Grimani C, Telloni D, Benella S, Cesarini A, Fabi M, Villani M. 2019. Study of galactic cosmic-ray flux modulation by interplanetary plasma structures for the evaluation of space instrument performance and space weather science investigations. Atmosphere 10(12): 749. https://doi.org/10.3390/atmos10120749. [NASA ADS] [CrossRef] [Google Scholar]
- Grimani C, Cesarini A, Fabi M, Sabbatini F, Telloni D, Villani M. 2020. Recurrent galactic cosmic-ray flux modulation in L1 and geomagnetic activity during the declining phase of the solar cycle 24. Astrophys J 904(1): 64. https://doi.org/10.3847/1538-4357/abbb90. [CrossRef] [Google Scholar]
- Grimani C, Andretta V, Chioetto P, Da Deppo V, Fabi M, et al. 2021a. Cosmic-ray flux predictions and observations for and with metis on board solar orbiter. A&A 656: A15. https://doi.org/10.1051/0004-6361/202140930. [CrossRef] [EDP Sciences] [Google Scholar]
- Grimani C, Cesarini A, Fabi M, Villani M. 2021b. Low-energy electromagnetic processes affecting free-falling test-mass charging for LISA and future space interferometers. Class Quantum Gravity 38(4): 045013. https://doi.org/10.1088/1361-6382/abd142. [CrossRef] [Google Scholar]
- Hu SQ. 2017. The Grad-Shafranov reconstruction in twenty years: 1996–2016. Sci China Earth Sci 60(8): 1466–1494. https://doi.org/10.1007/s11430-017-9067-2. [CrossRef] [Google Scholar]
- Hu Q, Sonnerup BUÖ. 2002. Reconstruction of magnetic clouds in the solar wind: Orientations and configurations. J Geophys Res Space Phys 107(A7): 1142. https://doi.org/10.1029/2001JA000293. [CrossRef] [Google Scholar]
- Lepping RP, Acũna MH, Burlaga LF, Farrell WM, Slavin JA, et al. 1995. The wind magnetic field investigation. Space Sci Rev 71(1–4): 207–229. https://doi.org/10.1007/BF00751330. [CrossRef] [Google Scholar]
- Lin RP, Dennis BR, Hurford GJ, Smith DM, Zehnder A, et al. 2002. The reuven ramaty high-energy solar spectroscopic imager (RHESSI). Sol Phys 210(1): 3–32. https://doi.org/10.1023/A:1022428818870. [CrossRef] [Google Scholar]
- Mateos I. 2015. Design and assessment of a low-frequency magnetic measurement system for eLISA, Ph.D. thesis. Departament d’Enginyeria Electronica, Universitat Politecnica de Catalunya. [Google Scholar]
- Mariani F, Neubauer FM. 1990. The interplanetary magnetic field. In: Physics of the Inner Heliosphere I. Schwenn R, Marsch E (Eds.), Springer, 183. [CrossRef] [Google Scholar]
- McGuire RE, von Rosenvinge TT. 1984. The energy spectra of solar energetic particles. Adv Space Res 4(2–3): 117–125. https://doi.org/10.1016/0273-1177(84)90301-6. [CrossRef] [Google Scholar]
- Morris G, Edwards C. 2013. Design of a cold-gas micropropulsion system for LISA pathfinder. In: AIAA 2013–3854. https://doi.org/10.2514/6.2013-3854. [Google Scholar]
- Maurin D, Melot F, Dembinski H, Gonzalez J, Mari I, Taillet R. 2020. Cosmic-Ray DataBase (CRDB). https://lpsc.in2p3.fr/crdb/. Current version: V4.0 (May 2020). [Google Scholar]
- McIntosh SW, Chapman S, Leamon RJ, Egeland R, Watkins NW. 2020. Overlapping magnetic activity cycles and the sunspot number: Forecasting sunspot cycle 25 amplitude. Sol Phys 295(12): 163. https://doi.org/10.1007/s11207-020-01723-y. [CrossRef] [Google Scholar]
- Nymmik RA. 1991a. Relationships among solar activity, SEP occurrence frequency, and solar energetic particle event distribution function. In: Proc. 26th Int. Cosmic Ray Conf. (Salt Lake City), vol. 6, New York, NY, pp. 280–283. https://galprop.stanford.edu/elibrary/icrc/1999/proceedings/root/vol6/s1_5_16.pdf. [Google Scholar]
- Nymmik RA. 1991b. SEP event distribution function as inferred from spaceborne measurements and lunar rock isotopic data. In: Proc. 26th Int. Cosmic Ray Conf. (Salt Lake City), vol. 6, New York, NY, pp. 268–271. https://galprop.stanford.edu/elibrary/icrc/1999/proceedings/root/vol6/s1_5_13.pdf. [Google Scholar]
- Nishio Y, Tohyama F, Onishi N. 2007. The sensor temperature characteristics of a fluxgate magnetometer by a wide-range temperature test for a Mercury exploration satellite. Meas Sci Technol 18(8): 2721–2730. https://doi.org/10.1088/0957-0233/18/8/050. [CrossRef] [Google Scholar]
- Papini P, Grimani C, Stephens S. 1996. An estimate of the secondary-proton spectrum at small atmospheric depths. Nuovo Cim C19: 367–387. https://doi.org/10.1007/BF02509295. [CrossRef] [Google Scholar]
- Plainaki C, Antonucci M, Bemporad A, Berrilli F, Bertucci B, et al. 2020. Current state and perspectives of Space Weather science in Italy. J Space Weather Space Clim 10: 6. https://doi.org/10.1051/swsc/2020003. [CrossRef] [EDP Sciences] [Google Scholar]
- Soto A, Lapena E, Otero J, Romero V, Garcia O, Oliver J, Alou P, Cobos JA. 2008. High performance and reliable MPPT solar array regulator for the PCDU of LISA pathfinder. In: 8th European Space Power Conference. Lacoste H, Ouwehand L (Eds.), vol. 661, ESA Special Publication, 45 p. [Google Scholar]
- Storini M, Cliver W, Laurenza M, Grimani C. 2008. Forecasting solar energetic particle events. In: EUR 23348 – COST Action 724 – Developing the scientific basis for monitoring, modelling and predicting Space Weather, Luxembourg. ISBN 978-92-898-0044-0. [Google Scholar]
- Scharlemann C, Buldrini N, Killinger R, Jentsch M, Polli A, Ceruti L, Serafini L, DiCara D, Nicolini D. 2011. Qualification test series of the indium needle FEEP micro-propulsion system for LISA Pathfinder. Acta Astronaut 69(9–10): 822–832. https://doi.org/10.1016/j.actaastro.2011.05.037. [CrossRef] [Google Scholar]
- Singh AK, Bhargawa A. 2019. Prediction of declining solar activity trends during solar cycles 25 and 26 and indication of other solar minimum. Astrophys Space Sci 364(1): 12. https://doi.org/10.1007/s10509-019-3500-9. [CrossRef] [Google Scholar]
- Vocca H, Grimani C, Amico P, Gammaitoni L, Marchesoni F, Bagni G, Marconi L, Stanga R, Vetrano F, Viceré A. 2005. Simulation of the charging process of the LISA test masses due to solar particles. Class Quantum Gravity 22: S319–S325. https://doi.org/10.1088/0264-9381/22/10/024. [CrossRef] [Google Scholar]
- Vashenyuk EV, Balabin YV, Miroshnichenko LI. 2008. Relativistic solar protons in the ground level event of 23 February 1956: New study. Adv Space Res 41: 926–935. https://doi.org/10.1016/j.asr.2007.04.063. [CrossRef] [Google Scholar]
- Vitale S, Congedo G, Dolesi R, Ferroni V, Hueller M, et al. 2014. Data series subtraction with unknown and unmodeled background noise. Phys Rev D 90: 042003. https://doi.org/10.1103/PhysRevD.90.042003. [CrossRef] [Google Scholar]
- Villani M, Benella S, Fabi M, Grimani C. 2020. Low-energy electron emission at the separation of gold-platinum surfaces induced by galactic cosmic rays on board LISA Pathfinder. Appl Surf Sci 512: 145734. https://doi.org/10.1016/j.apsusc.2020.145734. [CrossRef] [Google Scholar]
- Villani M, Cesarini A, Fabi M, Grimani C. 2021. Role of plasmons in the LISA test-mass charging process. Class Quantum Gravity 38(14): 145005. https://doi.org/10.1088/1361-6382/ac025e. [CrossRef] [Google Scholar]
- Yu Z, Xiao CH, Wang H, Zhou YZ. 2013. The calculation of the magnetic field produced by an arbitrary shaped current-carrying wire in its plane. In: Information Technology Applications in Industry, Computer Engineering and Materials Science, Advanced Materials Research, vol. 756, Trans Tech Publications Ltd, pp. 3687–3691. https://doi.org/10.4028/www.scientific.net/AMR.756-759.3687. [Google Scholar]
- Ziemer JK, Randolph T, Hruby V, Spence D, Demmons N, Roy T, Connolly W, Ehrbar E, Zwahlen J, Martin R. 2006. Colloid microthrust propulsion for the space technology 7 (ST7) and LISA missions. In: Laser Interferometer Space Antenna: 6th International LISA Symposium, American Institute of Physics Conference Series, Merkovitz SM, Livas JC (Eds.), vol. 873, pp. 548–555. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.