Open Access
Issue |
J. Space Weather Space Clim.
Volume 13, 2023
|
|
---|---|---|
Article Number | 9 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2023009 | |
Published online | 19 April 2023 |
- Aikio AT, Pitkänen T, Kozlovsky A, Amm O. 2006. Method to locate the polar cap boundary in the nightside ionosphere and application to a substorm event. Ann Geophys 24(7): 1905–1917. https://doi.org/10.5194/angeo-24-1905-2006. [CrossRef] [Google Scholar]
- Baker JB, Clauer CR, Ridley AJ, Papitashvili VO, Brittnacher MJ, Newell PT. 2000. The nightside poleward boundary of the auroral oval as seen by DMSP and the ultraviolet imager. J Geophys Res 105(A9): 21267–21280. https://doi.org/10.1029/1999JA000363. [CrossRef] [Google Scholar]
- Baker KB, Wing S. 1989. A new magnetic coordinate system for conjugate studies at high latitudes. J Geophys Res 94(A7): 9139–9143. https://doi.org/10.1029/JA094iA07p09139. [CrossRef] [Google Scholar]
- Bartels J, Heck NH, Johnston HF. 1939. The three-hour-range index measuring geomagnetic activity. Terr Magn Atmos Electr 44(4): 411–454. https://doi.org/10.1029/TE044i004p00411. [CrossRef] [Google Scholar]
- Bikkuzina GR, Sergeev VA, Bösinger T. 1998. Particle boundaries during a solar electron event. In: Polar cap boundary phenomena, Moen J, Egeland A, Lockwood M, (Eds.), Springer, Dordrecht, The Netherlands, pp. 355–367. ISBN 978-94-011-5214-3. https://doi.org/10.1007/978-94-011-5214-3_27. [CrossRef] [Google Scholar]
- Blanchard GT, Lyons LR, Samson JC, Rich FJ. 1995. Locating the polar cap boundary from observations of 6300 Å auroral emission. J Geophys Res 100(A5): 7855–7862. https://doi.org/10.1029/94JA02631. [CrossRef] [Google Scholar]
- Bornebusch J, Wissing J, Kallenrode M-B. 2010. Solar particle precipitation into the polar atmosphere and their dependence on hemisphere and local time. Adv Space Res 45(5): 632–637. https://doi.org/10.1016/j.asr.2009.11.008. [CrossRef] [Google Scholar]
- Cane HV, McGuire RE, von Rosenvinge TT. 1986. Two classes of solar energetic particle events associated with impulsive and long-duration soft X-ray flares. Astrophys J 301: 448. https://doi.org/10.1086/163913. [CrossRef] [Google Scholar]
- Carbary JF. 2005. A Kp-based model of auroral boundaries. Space Weather 3(10): S10001. https://doi.org/10.1029/2005SW000162. [Google Scholar]
- Chisham G, Freeman MP, Sotirelis T. 2004. A statistical comparison of SuperDARN spectral width boundaries and DMSP particle precipitation boundaries in the nightside ionosphere. Geophys Res Lett 31(2): L02804. https://doi.org/10.1029/2003GL019074. [CrossRef] [Google Scholar]
- Cohen CMS. 2006. Observations of energetic storm particles: an overview. In: Solar eruptions and energetic particles, Gopalswamy N, Mewaldt R, Torsti J, (Eds.), American Geophysical Union (AGU), pp. 275–282. ISBN 9781118666203. https://doi.org/10.1029/165GM26. [Google Scholar]
- Craven JD, Frank LA. 1987. Latitudinal motions of the aurora during substorms. J Geophys Res 92(A5): 4565–4574. https://doi.org/10.1029/JA092iA05p04565. [CrossRef] [Google Scholar]
- Dungey JW. 1961. Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6(2): 47–48. https://doi.org/10.1103/PhysRevLett.6.47. [CrossRef] [Google Scholar]
- Evans D. 2008. General update – SEM-2 performance on the operating satellites during 2007. Technical report. National Oceanic and Atmospheric Administration. https://satdat.ngdc.noaa.gov/sem/poes/docs/status_2008-01-10.pdf. [Google Scholar]
- Evans DS, Greer MS. 2006. Polar orbiting environmental satellite space environment monitor – 2, instrument descriptions and archive data documentation. National Oceanic and Atmospheric Administration, NOAA Space Environ. Lab, Boulder, Colorado, USA. Version 2.0. https://satdat.ngdc.noaa.gov/sem/poes/docs/sem2_docs/2006/SEM2v2.0.pdf. [Google Scholar]
- Evans L, Stone E. 1972. Electron polar cap and the boundary of open geomagnetic field lines. J Geophys Res 77(28): 5580. https://doi.org/10.1029/JA077i028p05580. [CrossRef] [Google Scholar]
- Feldstein YI, Starkov GV. 1967. Dynamics of auroral belt and polar geomagnetic disturbances. Planet Space Sci 15(2): 209–229. https://doi.org/10.1016/0032-0633(67)90190-0. [CrossRef] [Google Scholar]
- Gary JB, Zanetti LJ, Anderson BJ, Potemra TA, Clemmons JH, Winningham JD, Sharber JR. 1998. Identification of auroral oval boundaries from in situ magnetic field measurements. J Geophys Res 103(A3): 4187–4198. https://doi.org/10.1029/97JA02395. [CrossRef] [Google Scholar]
- Gussenhoven MS, Brautigam DH. 1994. Boundary populations in the polar caps. J Atmos Terr Phys 56(2): 167–183. https://doi.org/10.1016/0021-9169(94)90028-0. [CrossRef] [Google Scholar]
- Hardy DA, Gussenhoven MS, Holeman E. 1985. A statistical model of auroral electron precipitation. J. Geophys. Res. 90: 4229–4248. https://doi.org/10.1029/JA090iA05p04229. [CrossRef] [Google Scholar]
- Herbst K, Kopp A, Heber B. 2013. Influence of the terrestrial magnetic field geometry on the cutoff rigidity of cosmic ray particles. Ann Geophys 31(10): 1637–1643. https://doi.org/10.5194/angeo-31-1637-2013. [CrossRef] [Google Scholar]
- Johnsen MG, Lorentzen DA, Holmes JM, Løvhaug UP. 2012. A model based method for obtaining the open/closed field line boundary from the cusp auroral 6300 Å[OI] red line. J Geophys Res Space Phys 117(A3): A03319. https://doi.org/10.1029/2011JA016980. [Google Scholar]
- Kallenrode M-B. 2003. Current views on impulsive and gradual solar energetic particle events. J Phys G Nucl Part Phys 29(5): 965–981. https://doi.org/10.1088/0954-3899/29/5/316. [Google Scholar]
- Kauristie K, Weygand J, Pulkkinen TI, Murphree JS, Newell PT. 1999. Size of the auroral oval: UV ovals and precipitation boundaries compared. J Geophys Res 104(A2): 2321–2332. https://doi.org/10.1029/1998JA900046. [CrossRef] [Google Scholar]
- Laundal KM, Richmond AD. 2017. Magnetic coordinate systems. Space Sci Rev 206(1–4): 27–59. https://doi.org/10.1007/s11214-016-0275-y. [CrossRef] [Google Scholar]
- Leske RA, Mewaldt RA, Stone EC, von Rosenvinge TT. 2001. Observations of geomagnetic cutoff variations during solar energetic particle events and implications for the radiation environment at the space station. J Geophys Res Space Phys 106(A12): 30011–30022. https://doi.org/10.1029/2000JA000212. [CrossRef] [Google Scholar]
- Lukianova R, Kozlovsky A. 2011. IMF By effects in the plasma flow at the polar cap boundary. Ann Geophys 29(7): 1305–1315. https://doi.org/10.5194/angeo-29-1305-2011. [CrossRef] [Google Scholar]
- Lukianova R, Kozlovsky A. 2013. Dynamics of polar boundary of the auroral oval derived from the IMAGE satellite data. Cosm Res 51(1): 46–53. https://doi.org/10.1134/S0010952513010061. [CrossRef] [Google Scholar]
- McEwen DJ. 1998. Polar cap phenomena and their relation to boundary layers and the IMF. In: Polar cap boundary phenomena, Moen J, Egeland A, Lockwood M, (Eds.), Springer, Dordrecht, The Netherlands, pp. 271–280. https://doi.org/10.1007/978-94-011-5214-3_20. [CrossRef] [Google Scholar]
- Meng C-I, Makita K. 1986. Dynamic variations of the polar CAP. In: Solar wind magnetosphere coupling, vol. 126 of Astrophysics and Space Science Library, Kamide Y, Slavin JA, (Eds.), Terra Scientific Publishing Company/D. Reidel Publishing Company, Tokyo, Japan/Dordrecht, The Netherlands, pp. 605–631. ISBN 90-277-2303-6. [CrossRef] [Google Scholar]
- Milan SE, Lester M, Cowley SWH, Oksavik K, Brittnacher M, Greenwald RA, Sofko G, Villain JP. 2003. Variations in the polar cap area during two substorm cycles. Ann Geophys 21(5): 1121–1140. https://doi.org/10.5194/angeo-21-1121-2003. [CrossRef] [Google Scholar]
- Murphree JS, Elphinstone RD, Cogger LL, Hearn D. 1991. Viking optical substorm signatures. In: Magnetospheric substorms, vol. 64 of Geophysical Monograph Series, Kan JR, Potemra TA, Kokubun S, Iijima T, (Eds.), American Geophysical Union, Washington, DC, pp. 241–255. https://doi.org/10.1029/GM064p0241. [Google Scholar]
- Nesse Tyssøy H, Sinnhuber M, Asikainen T, Bender S, Clilverd MA, et al. 2022. HEPPA III intercomparison experiment on electron precipitation impacts: 1. Estimated ionization rates during a geomagnetic active period in April 2010. J Geophys Res Space Phys 127(1): e2021JA029128. https://doi.org/10.1029/2021JA029128. [Google Scholar]
- Newell PT, Liou K, Wilson GR. 2009. Polar cap particle precipitation and aurora: review and commentary. J Atmos Sol Terr Phys 71(2): 199–215. https://doi.org/10.1016/j.jastp.2008.11.004. [CrossRef] [Google Scholar]
- Newell PT, Meng C-I. 1990. Intense keV energy polar rain. J Geophys Res Space Phys 95(A6): 7869–7879. https://doi.org/10.1029/JA095iA06p07869. [CrossRef] [Google Scholar]
- Nsumei PA, Reinisch BW, Song P, Tu J, Huang X. 2008. Polar cap electron density distribution from IMAGE radio plasma imager measurements: empirical model with the effects of solar illumination and geomagnetic activity. J Geophys Res Space Phys 113(A1): A01217. https://doi.org/10.1029/2007JA012566. [Google Scholar]
- Richmond AD. 1995. Ionospheric electrodynamics using magnetic apex coordinates. J Geomag Geoelectr 47: 191–212. https://doi.org/10.5636/jgg.47.191. [CrossRef] [Google Scholar]
- Scholer M. 1972. Polar-cap structures of solar protons observed during the passage of interplanetary discontinuities. J Geophys Res (1896–1977) 77(16): 2762–2769. https://doi.org/10.1029/JA077i016p02762. [CrossRef] [Google Scholar]
- Sergeev VA. 1990. Polar cap and cusp boundaries at day and night. J Geomag Geoelectr 42(6): 683–695. https://doi.org/10.5636/jgg.42.683. [CrossRef] [Google Scholar]
- Sergeev VA, Kuznetsov SN, Gotseliuk IV. 1987. Dynamics of the high-latitude magnetospheric structure as given by solar electron data. Geomagn Aeron 27: 440–447. [Google Scholar]
- Shirai H, Maezawa K, Fujimoto M, Mukai T, Yamamoto T, Saito Y, Kokubun S. 1998. Entry process of low-energy electrons into the magnetosphere along open field lines: polar rain electrons as field line tracers. J Geophys Res Space Phys 103(A3): 4379–4390. https://doi.org/10.1029/97JA02031. [CrossRef] [Google Scholar]
- Sigernes F, Dyrland M, Brekke P, Chernouss S, Lorentzen DA, Oksavik K, Deehr CS. 2011. Two methods to forecast auroral displays. J Space Weather Space Clim 1(1): A03. https://doi.org/10.1051/swsc/2011003. [Google Scholar]
- Smart DF, Shea MA, Gall R. 1969. The daily variation of trajectory-derived high-latitude cutoff rigidities in a model magnetosphere. J Geophys Res (1896–1977) 74(19): 4731–4738. https://doi.org/10.1029/JA074i019p04731. [CrossRef] [Google Scholar]
- Sotirelis T, Ruohoniemi JM, Barnes RJ, Newell PT, Greenwald RA, Skura JP, Meng CI. 2005. Comparison of SuperDARN radar boundaries with DMSP particle precipitation boundaries. J Geophys Res Space Phys 110(A6): A06302. https://doi.org/10.1029/2004JA010732. [CrossRef] [Google Scholar]
- Torbert RB, Cattell CA, Mozer FS, Meng C-I. 1981. The boundary of the polar cap and its relation to electric fields, field-aligned currents, and auroral particle precipitation. In: Physics of auroral arc formation, vol. 25 of Geophysical Monograph Series, Akasofu S-I, Kan JR, (Eds.), American Geophysical Union (AGU), pp. 143–153. ISBN 9781118664360. https://doi.org/10.1029/GM025p0143. [Google Scholar]
- Torr MR, Torr DG, Zukic M, Johnson RB, Ajello J, et al. 1995. A far ultraviolet imager for the international solar-terrestrial physics mission. Space Science Rev 71(1–4): 329–383. https://doi.org/10.1007/BF00751335. [CrossRef] [Google Scholar]
- Wagner D, Neuhäuser R. 2019. Variation of the auroral oval size and offset for different magnetic activity levels described by the Kp-index. Astron Nachr 340(6): 483–493. https://doi.org/10.1002/asna.201913601. [CrossRef] [Google Scholar]
- Winningham JD, Heikkila WJ. 1974. Polar cap auroral electron fluxes observed with Isis 1. J Geophys Res (1896–1977) 79(7): 949–957. https://doi.org/10.1029/JA079i007p00949. [CrossRef] [Google Scholar]
- Wissing JM, Bornebusch J, Kallenrode M-B. 2008. Variation of energetic particle precipitation with local magnetic time. Adv Space Res 41: 1274–1278. https://doi.org/10.1016/j.asr.2007.05.063. [CrossRef] [Google Scholar]
- Wissing JM, Kallenrode M-B. 2009. Atmospheric Ionization Module Osnabrück (AIMOS): A 3-D model to determine atmospheric ionization by energetic charged particles from different populations. J Geophys Res Space Phys 114(A6): A06104. https://doi.org/10.1029/2008JA013884. [Google Scholar]
- Yakovchuk O, Wissing J. 2019. Magnetic local time asymmetries in precipitating electron and proton populations with and without substorm activity. Ann Geophys 37(6): 1063–1077. https://doi.org/10.5194/angeo-37-1063-2019. [CrossRef] [Google Scholar]
- Yando K, Millan RM, Green JC, Evans DS. 2011. A Monte Carlo simulation of the NOAA POES medium energy proton and electron detector instrument. J Geophys Res Space Phys 116(A10): A10231.https://doi.org/10.1029/2011JA016671. [Google Scholar]
- Yeager DM, Frank LA. 1976. Low-energy electron intensities at large distances over the Earth’s polar cap. J Geophys Res (1896–1977) 81(22): 3966–3976. https://doi.org/10.1029/JA081i022p03966. [CrossRef] [Google Scholar]
- Zhang Y, Paxton L. 2008. An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data. J Atmos Sol Terr Phys 70(8): 1231–1242. https://doi.org/10.1016/j.jastp.2008.03.008. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.