Open Access
Issue |
J. Space Weather Space Clim.
Volume 13, 2023
|
|
---|---|---|
Article Number | 8 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/swsc/2023006 | |
Published online | 06 April 2023 |
- Alken P, Maus S, Richmond AD, Maute A. 2011. The ionospheric gravity and diamagnetic current systems. J Geophys Res 116(A12): A12316. https://doi.org/10.1029/2011JA017126. [CrossRef] [Google Scholar]
- Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang X. 2017. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather 15(2): 418–429. https://doi.org/10.1002/2016SW001593. [Google Scholar]
- Bilitza D. 2018. IRI the International Standard for the Ionosphere. Adv Radio Sci 16: 1–11. https://doi.org/10.5194/ars-16-1-2018. [CrossRef] [Google Scholar]
- Chapagain NP, Fisher DJ, Meriwether JW, Chau JL, Makela JJ. 2013. Comparison of zonal neutral winds with equatorial plasma bubble and plasma drift velocities. J Geophys Res: Space Phys 118(4): 1802–1812. https://doi.org/10.1002/jgra.50238. [CrossRef] [Google Scholar]
- Chau JL, Woodman RF. 2004. Daytime vertical and zonal velocities from 150-km echoes: Their relevance to F-region dynamics. Geophys Res Lett 31(17): 17801. https://doi.org/10.1029/2004GL020800. [Google Scholar]
- Coley WR, Heelis RA. 1989. Low-latitude zonal and vertical ion drifts seen by DE-2. J Geophys Res 94(A6): 6751–6761. https://doi.org/10.1029/JA094iA06p06751. [CrossRef] [Google Scholar]
- Drob DP, Emmert JT, Crowley G, Picone JM, Shepherd GG, et al. 2008. An empirical model of the Earth’s horizontal wind fields: HWM07. J Geophys Res 113(A12): A12304. https://doi.org/10.1029/2008JA013668. [Google Scholar]
- Drob DP, Emmert JT, Meriwether JW, Makela JJ, Doornbos E, et al. 2015. An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth Space Sci 2(7): 301–319. https://doi.org/10.1002/2014EA000089. [CrossRef] [Google Scholar]
- Eccles JV. 1998. A simple model of low-latitude electric fields. J Geophys Res 103(A11): 26699–26708. https://doi.org/10.1029/98JA02657. [CrossRef] [Google Scholar]
- Eccles JV, Maynard N, Wilson G. 1999. Study of the evening plasma drift vortex in the low latitude ionosphere using San Marco electric field measurements. J Geophys Res 104(A12): 28133–28143. https://doi.org/10.1029/1999JA900373. [CrossRef] [Google Scholar]
- Eccles JV. 2004. The effect of gravity and pressure in the electrodynamics of the low-latitude ionosphere. J Geophys Res 109(A5): A05304. https://doi.org/10.1029/2003JA010023. [Google Scholar]
- Eccles JV, St. Maurice JP, Schunk RW. 2015. Mechanisms underlying the prereversal enhancement of the vertical plasma drift in the low-latitude ionosphere. J Geophys Res 120(6): 4950–4970. https://doi.org/10.1002/2014JA020664. [CrossRef] [Google Scholar]
- Fejer BG, Scherliess L, de Paula ER. 1999. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J Geophys Res 104(A9): 19859–19869. https://doi.org/10.1029/1999JA900271. [CrossRef] [Google Scholar]
- Fejer BG, de Souza J, Santos AS, Costa Pereira AE. 2005. Climatology of F region zonal plasma drifts over Jicamarca. J Geophys Res 110(A12): A12310. https://doi.org/10.1029/2005JA011324. [CrossRef] [Google Scholar]
- Fejer BG, Tracy BD, Pfaff RF. 2013. Equatorial zonal plasma drifts measured by the C/NOFS satellite during the 2008–2011 solar minimum. J Geophys Res: Space Phys 118(6): 3891–3897. https://doi.org/10.1002/jgra.50382. [CrossRef] [Google Scholar]
- Gentile LC, Burke WJ, Rich FJ. 2006. A climatology of equatorial plasma bubbles from DMSP 1989–2004. Radio Sci 41(5): RS5S21. https://doi.org/10.1029/2005RS003340. [Google Scholar]
- Haerendel G, Eccles JV, Çakir S. 1992. Theory for modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow. J Geophys Res 97(A2): 1209–1223. https://doi.org/10.1029/91JA02226. [CrossRef] [Google Scholar]
- Hagan ME, Maute A, Roble RG, Richmond AD, Immel TJ, England SL. 2007. Connections between deep tropical clouds and the Earth’s ionosphere. Geophys Res Lett 34(20): L20109. https://doi.org/10.1029/2007GL030142. [CrossRef] [Google Scholar]
- Hedin AE, Fleming EL, Manson AH, Schmidlin FJ, Avery SK, et al. 1996. Empirical wind model for the upper, middle and lower atmosphere. J Atmos Terr Phys 58(13): 1421–1447. https://doi.org/10.1016/0021-9169(95)00122-0. [CrossRef] [Google Scholar]
- Hui D, Fejer BG. 2015. Daytime plasma drifts in the equatorial lower ionosphere. J Geophys Res 120(11): 9738–9747. https://doi.org/10.1002/2015JA021838. [CrossRef] [Google Scholar]
- Hysell DL, Kudeki E. 2004. Collisional shear instability in the equatorial F region ionosphere. J Geophys Res 109(A11): A11301. https://doi.org/10.1029/2004JA010636. [CrossRef] [Google Scholar]
- Immel TJ, Sagawa E, England SL, Henderson SB, Hagan ME, Mende SB, Frey HU, Swenson CM, Paxton LJ. 2006. Control of equatorial ionospheric morphology by atmospheric tides. Geophys Res Lett 33(15): L15108. https://doi.org/10.1029/2006GL026161. [CrossRef] [Google Scholar]
- Kil H, Oh SJ, Kelley MC, Paxton LJ, England SL, Talaat E, Min KW, Su SY. 2007. Longitudinal structure of the vertical E × B drift and ion density seen from ROCSAT-1. Geophys Res Lett 34(14): L14110. https://doi.org/10.1029/2007GL030018. [CrossRef] [Google Scholar]
- Kil H, Paxton LJ, Oh SJ. 2009. Global bubble distribution seen from ROCSAT-1 and its association with the evening prereversal enhancement. J Geophys Res 114(A6): A06307. https://doi.org/10.1029/2008JA013672. [Google Scholar]
- Klobuchar JA, Anderson DN, Doherty PH. 1991. Model studies of the latitudinal extent of the equatorial anomaly during equinoctial conditions. Radio Sci 26(4): 1025–1047. https://doi.org/10.1029/91RS00799. [Google Scholar]
- Kudeki E, Bhattacharyya S. 1999. Postsunset vortex in equatorial Fb region plasma drifts and implications for bottomside spread-F. J Geophys Res 104(A12): 28163–28170. https://doi.org/10.1029/1998JA900111. [CrossRef] [Google Scholar]
- Kudeki E, Akgiray A, Milla M, Chau JL, Hysell DL. 2007. Equatorial spread-F initiation: Post-sunset vortex, thermospheric winds, gravity waves. J Atmos Solar-Terr Phys 69(17–18): 2416–2427. https://doi.org/10.1016/j.jastp.2007.04.012. [CrossRef] [Google Scholar]
- Liu J, Liu H, Wang W, Burns AG, Wu Q, et al. 2018. First results from the ionospheric extension of WACCM-X during the deep solar minimum year of 2008. J Geophys Res: Space Phys 123(2): 1534–1553. https://doi.org/10.1002/2017JA025010. [CrossRef] [Google Scholar]
- Picone JM, Hedin AE, Drob DP, Aikin AC. 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res: Space Phys 107(A12): SIA 15. https://doi.org/10.1029/2002JA009430. [Google Scholar]
- Richmond AD, Fang TW, Maute A. 2015. Electrodynamics of the equatorial evening ionosphere: 1. Importance of winds in different regions. J Geophys Res 120(3): 2118–2132. https://doi.org/10.1002/2014JA020934. [CrossRef] [Google Scholar]
- Rodrigues FS, Crowley G, Heelis RA, Maute A, Reynolds A. 2012. On TIE-GCM simulation of the evening equatorial plasma vortex. J Geophys Res 117(A5): A05307. https://doi.org/10.1029/2011JA017369. [Google Scholar]
- Rodrigues FS, Shume EB, de Paula ER, Milla M. 2013. Equatorial 150 km echoes and daytime F region vertical plasma drifts in the Brazilian longitude sector. Ann Geophys 31(10): 1867–1876. https://doi.org/10.5194/angeo-31-1867-2013. [CrossRef] [Google Scholar]
- Sagawa E, Immel TJ, Frey HU, Mende SB. 2005. Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV. J Geophys Res 110(A11): A11302. https://doi.org/10.1029/2004JA010848. [CrossRef] [Google Scholar]
- Scherliess L, Fejer BG. 1999. Radar and satellite global equatorial F region vertical drift model. J Geophys Res 104(A4): 6829–6842. https://doi.org/10.1029/1999JA900025. [CrossRef] [Google Scholar]
- Shidler SA, Rodrigues FS. 2019. On the magnitude and variability of height gradients in the equatorial F region vertical plasma drifts. J Geophys Res: Space Phys 124(6): 4916–4925. https://doi.org/10.1029/2019JA026661. [CrossRef] [Google Scholar]
- Shidler SA, Rodrigues F, Fejer BG, Milla M. 2019. Radar studies of height-dependent equatorial F region vertical and zonal plasma drifts. J Geophys Res: Space Phys 124(3): 2058–2071. https://doi.org/10.1029/2019JA026476. [CrossRef] [Google Scholar]
- Shidler SA, Rodrigues FS. 2021. On a simple, data-aided analytic description of the morphology of equatorial F-region zonal plasma drifts. Prog Earth Planet Sci 8: 26. https://doi.org/10.1186/s40645-021-00417-8. [Google Scholar]
- Shidler SA, Rodrigues FS. 2022. An electrodynamics model for data interpretation and numerical analysis of ionospheric missions and observations (DINAMO). Prog Earth Planet Sci 9: 7. https://doi.org/10.1186/s40645-021-00462-3. [Google Scholar]
- Smith JM, Rodrigues FS, Fejer BG, Milla MA. 2016. Coherent and incoherent scatter radar study of the climatology and day-to-day variability of mean F region vertical drifts and equatorial spread F. J Geophys Res: Space Phys 121(2): 1466–1482. https://doi.org/10.1002/2015JA021934. [CrossRef] [Google Scholar]
- Smith JM, Klenzing J. 2022. Growin: Modeling ionospheric instability growth rates. J Space Weather Space Clim 12: 26. https://doi.org/10.1051/swsc/2022021. [Google Scholar]
- Stoneback RA, Heelis RA, Burrell AG, Coley WR, Fejer BG, Pacheco E. 2011. Observations of quiet time vertical ion drift in the equatorial ionosphere during the solar minimum period of 2009. J Geophys Res 116(A12): A12327. https://doi.org/10.1029/2011JA016712. [Google Scholar]
- Thébault E, Finlay CC, Beggan CD, Alken P, Aubert J, et al. 2015. International geomagnetic reference field: The 12th generation. Earth Planets Space 67: 1–19. https://doi.org/10.1186/s40623-015-0228-9. [CrossRef] [Google Scholar]
- Zhan W, Rodrigues FS. 2018. June solstice equatorial spread F in the American sector: A numerical assessment of linear stability aided by incoherent scatter radar measurements. J Geophys Res: Space Phys 123(1): 755–767. https://doi.org/10.1002/2017JA024969. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.