Open Access
Issue |
J. Space Weather Space Clim.
Volume 13, 2023
Topical Issue - Space Climate: Long-term effects of solar variability on the Earth’s environment
|
|
---|---|---|
Article Number | 22 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/swsc/2023020 | |
Published online | 26 September 2023 |
- Adriani O, Barbarino GC, Bazilevskaya GA, Bellotti R, Boezio M, et al. 2017. Ten years of PAMELA in space. Riv Nuovo Cimento 40(10): 473–522. https://doi.org/10.1393/ncr/i2017-10140-x. [Google Scholar]
- Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, et al. 2003. GEANT4 – A simulation toolkit. Nucl Instrum Methods Phys Res A 506(3): 250–303. https://doi.org/10.1016/S0168-9002(03)01368-8. [CrossRef] [Google Scholar]
- Aguilar M, Ali Cavasonza L, Ambrosi G, Arruda L, Attig N, et al. 2021. The alpha magnetic spectrometer (AMS) on the international space station: Part II Results from the first seven years. Phys Rep 894: 1–116. https://doi.org/10.1016/j.physrep.2020.09.003. [CrossRef] [Google Scholar]
- Al Anid H, Lewis B, Bennett L, Takada M, Duldig M. 2014. Aircrew radiation dose estimates during recent solar particle events and the effect of particle anisotropy. Radiat Prot Dosim 158(3): 355–367. https://doi.org/10.1093/rpd/nct234. [CrossRef] [Google Scholar]
- Aleksandrov L. 1971. The Newton-Kantorovich regularized computing processes. USSR Comput Math Math Phys 11(1): 46–57. https://doi.org/10.1016/0041-5553(71)90098-X. [CrossRef] [Google Scholar]
- Aschwanden M. 2012. GeV particle acceleration in solar flares and ground level enhancement (GLE) events. Space Sci Rev 171(1–4): 3–21. https://doi.org/10.1007/s11214-011-9865-x. [CrossRef] [Google Scholar]
- Aster R, Borchers B, Thurber C. 2005. Parameter estimation and inverse problems. Elsevier, New York. ISBN 0-12-065604-3. [Google Scholar]
- Asvestari E, Willamo T, Gil A, Usoskin I, Kovaltsov G, Mikhailov V, Mayorov A. 2017. Analysis of ground level enhancements (GLE): Extreme solar energetic particle events have hard spectra. Adv Space Res 60: 781–787. https://doi.org/10.1016/j.asr.2016.08.043. [CrossRef] [Google Scholar]
- Banjac S, Herbst K, Heber B. 2019. The atmospheric radiation interaction simulator (AtRIS): description and validation. J Geophys Res Space Phys 124(1): 50–67. https://doi.org/10.1029/2018JA026042. [CrossRef] [Google Scholar]
- Beatty J, Matthews J, Wakely S. 2018. Cosmic rays. In M. Tanabashi et al., review of particle physics, 424–432. Phys Rev D 98: 030001. https://doi.org/10.1103/PhysRevD.98.030001. [Google Scholar]
- Belov A. 2009. Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena. Proc Int Astron Union 4(S257): 439–450. https://doi.org/10.1017/S1743921309029676. [Google Scholar]
- Bottollier-Depois J, Beck P, Bennett B, Bennett L, Bütikofer R, et al. 2009. Comparison of codes assessing galactic cosmic radiation exposure of aircraft crew. Radiat Prot Dosim 136(4): 317–323. https://doi.org/10.1093/rpd/ncp159. [CrossRef] [Google Scholar]
- Brown MC, Donadini F, Korte M, Nilsson A, Korhonen K, Lodge A, Lengyel SN, Constable CG. 2015a. GEOMAGIA50.v3: 1. General structure and modifications to the archeological and volcanic database recent advances in environmental magnetism and paleomagnetism. Earth Planet Space 67(1): 83. https://doi.org/10.1186/s40623-015-0232-0. [CrossRef] [Google Scholar]
- Brown MC, Donadini F, Nilsson A, Panovska S, Frank U, Korhonen K, Schuberth M, Korte M, Constable CG. 2015b. GEOMAGIA50.v3: 2. A new paleomagnetic database for lake and marine sediments. Earth Planet Space 67(1): 70. https://doi.org/10.1186/s40623-015-0233-z. [CrossRef] [Google Scholar]
- Bütikofer R, Flückiger E. 2013. Differences in published characteristics of GLE60 and their conseuences on computed radiation dose rates along selected flight paths. J Phys Conf Ser 409(1): 012166. https://doi.org/10.1088/1742-6596/409/1/012166. [CrossRef] [Google Scholar]
- Caballero-Lopez R, Moraal H. 2004. Limitations of the force field equation to describe cosmic ray modulation. J Geophys Res 109: A01101. https://doi.org/10.1029/2003JA010098. [Google Scholar]
- Castagnoli G, Lal D. 1980. Solar modulation effects in terrestrial production of carbon-14. Radiocarbon 22(2): 133–158. https://doi.org/10.1017/S0033822200009413. [CrossRef] [Google Scholar]
- Clem J, Dorman L. 2000. Neutron Monitor response functions. Space Sci Rev 93: 335–359. https://doi.org/10.1023/A:1026508915269. [CrossRef] [Google Scholar]
- Cliver E, Kahler S, Reames D. 2004. Coronal Shocks and Solar Energetic Proton Events. Astrophys J 605: 902–909. https://doi.org/10.1086/382651. [CrossRef] [Google Scholar]
- Cliver EW, Schrijver CJ, Shibata K, Usoskin IG. 2022. Extreme solar events. Living Rev Solar Phys 19(1): 2. https://doi.org/10.1007/s41116-022-00033-8. [CrossRef] [Google Scholar]
- Constable C, Korte M, Panovska S. 2016. Persistent high paleosecular variation activity in southern hemisphere for at least 10000 years. Earth Planet Sci Lett 453: 78–86. https://doi.org/10.1016/j.epsl.2016.08.015. [CrossRef] [Google Scholar]
- Cooke D, Humble J, Shea M, Smart D, Lund N, Rasmussen I, Byrnak B, Goret P, Petrou N. 1991. On cosmic-ray cutoff terminology. Il Nuovo Cimento C 14(3): 213–234. https://doi.org/10.1007/BF02509357. [NASA ADS] [CrossRef] [Google Scholar]
- Copeland K, Atwell W. 2019. Flight safety implications of the extreme solar proton event of 23 February 1956. Adv Space Res 63(1): 665–671. https://doi.org/10.1016/j.asr.2018.11.005. [CrossRef] [Google Scholar]
- Copeland K, Sauer H, Duke F, Friedberg W. 2008. Cosmic radiation exposure of aircraft occupants on simulated high-latitude flights during solar proton events from 1 January 1986 through 1 January 2008. Adv Space Res 42(6): 1008–1029. https://doi.org/10.1016/j.asr.2008.03.001. [CrossRef] [Google Scholar]
- Cramp J, Duldig M, Flückiger E, Humble J, Shea M, Smart D. 1997. The October 22, 1989, solar cosmic enhancement: ray an analysis the anisotropy spectral characteristics. J Geophys Res 102(A11): 24237–24248. https://doi.org/10.1029/97JA01947. [CrossRef] [Google Scholar]
- Desai M, Giacalone J. 2016. Large gradual solar energetic particle events. Living Rev Solar Phys 13(1): 3. https://doi.org/10.1007/s41116-016-0002-5. [CrossRef] [Google Scholar]
- Desorgher L, Flückiger E, Gurtner M, Moser M, Bütikofer R. 2005. A Geant 4 code for computing the interaction of cosmic rays with the earth’s atmosphere. Int J Mod Phys A 20(A11): 6802–6804. https://doi.org/10.1142/S0217751X05030132. [CrossRef] [Google Scholar]
- Dorman L. 2004. Cosmic rays in the earth’s atmosphere and underground. Kluwer Academic Publishers, Dordrecht. ISBN 1-4020-2071-6. [CrossRef] [Google Scholar]
- Ferrari A, Pelliccioni M, Rancati T. 2001. Calculation of the radiation environment caused by galactic cosmic rays for determining air crew exposure. Radiat Prot Dosim 93(2): 101–114. https://doi.org/10.1093/oxfordjournals.rpd.a006418. [CrossRef] [Google Scholar]
- Forbush S. 1937. On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys Rev 51(12): 1108–1109. [CrossRef] [Google Scholar]
- Gaisser T, Engel R, Resconi E. 2016. Cosmic rays and particle physics. Cambridge University Press, Cambridge, UK. ISBN 9781139192194. [CrossRef] [Google Scholar]
- Gao J, Korte M, Panovska S, Rong Z, Wei Y. 2022. Geomagnetic field shielding over the last one hundred thousand years. J Space Weather Space Clim 12: 31. https://doi.org/10.1051/swsc/2022027. [CrossRef] [EDP Sciences] [Google Scholar]
- Golub G, Van Loan C. 1980. An analysis of the total least squares problem. SIAM J Numer Anal 17(6): 883–893. [CrossRef] [Google Scholar]
- Gopalswamy N, Barbieri L, Cliver E, Lu G, Plunkett S, Skoug R. 2005. Introduction to violent sun-earth connection events of October–November 2003. J Geophys Res Space Phys 110(A9): A09S00. https://doi.org/10.1029/2005JA011268. [Google Scholar]
- Gopalswamy N, Xie H, Yashiro S, Akiyama S, Mäkelä P, Usoskin I. 2012. Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci Rev 171(1–4): 23–60. https://doi.org/10.1007/s11214-012-9890-4. [CrossRef] [Google Scholar]
- Grieder P. 2011. Extensive air showers: high energy phenomena and astrophysical aspects – a tutorial, reference manual and data book, Springer, Space Science Library (Book 1009). ISBN 978-3540769408. [Google Scholar]
- Hands A, Lei F, Davis C, Clewer B, Dyer C, Ryden K. 2022. A new model for nowcasting the aviation radiation environment with comparisons to in situ measurements during GLEs. Space Weather 20(8): e2022SW003155. https://doi.org/10.1029/2022SW003155. [CrossRef] [Google Scholar]
- Hatton C. 1971. The neutron monitor. In: Progress in elementary particle and cosmic-ray physics X, Chap. 1. North Holland Publishing Co., Amsterdam, pp. 3–100. [Google Scholar]
- Himmelblau D. 1972. Applied nonlinear programming. McGraw-Hill, TX, USA. ISBN 978-0070289215. [Google Scholar]
- Humble J, Duldig M, Smart D, Shea M. 1991. Detection of 0.5–15 GEV solar protons on 29 September 1989 at Australian stations. Geophys Res Lett 18(4): 737–740. https://doi.org/10.1029/91GL00017. [CrossRef] [Google Scholar]
- ICRP. 1996. ICRP Publication 74: conversion coefficients for use in radiological protection against external radiation. Ann ICRP 26(3–4): 1–205. [Google Scholar]
- Jiggens P, Clavie C, Evans H, O’Brien T, Witasse O, et al. 2019. In situ data and effect correlation during September 2017 solar particle event. Space Weather 17(1): 99–117. https://doi.org/10.1029/2018SW001936. [CrossRef] [Google Scholar]
- Jull AJT, Panyushkina IP, Lange TE, Kukarskih VV, Myglan VS, Clark KJ, Salzer MW, Burr GS, Leavitt SW. 2014. Excursions in the 14C record at AD 774–775 in tree rings from Russia and America. Geophys Res Lett 41: 3004–3030. https://doi.org/10.1002/2014GL059874. [CrossRef] [Google Scholar]
- Kiefer J. 1990. Biological radiation effects. Springer-Verlag, Berlin-Heidelberg. ISBN 978-3-540-510895, 978-3-642-83769-2. [CrossRef] [Google Scholar]
- Koldobskiy S, Mekhaldi F, Kovaltsov G, Usoskin I. 2023. Multiproxy reconstructions of integral energy spectra for extreme solar particle events of 7176 BCE, 660 BCE, 775 CE and 994 CE. J Geophys Res Space Phys 128(3): e2022JA031186. https://doi.org/10.1029/2022JA031186. [CrossRef] [Google Scholar]
- Koldobskiy S, Mishev A. 2022. Fluences of solar energetic particles for last three GLE events: Comparison of different reconstruction methods. Adv Space Res 70(9): 2585–2592. https://doi.org/10.1016/j.asr.2021.11.032. [CrossRef] [Google Scholar]
- Koldobskiy S, Raukunen O, Vainio R, Kovaltsov G, Usoskin I. 2021. New reconstruction of event-integrated spectra (spectral fluences) for major solar energetic particle events. A&A 647: A132. https://doi.org/10.1051/0004-6361/202040058. [CrossRef] [EDP Sciences] [Google Scholar]
- Koldobskiy SA, Bindi V, Corti C, Kovaltsov GA, Usoskin IG. 2019. Validation of the neutron monitor yield function using data from AMS-02 experiment 2011–2017. J Geophys Res Space Phys 124: 2367–2379. https://doi.org/10.1029/2018JA026340. [CrossRef] [Google Scholar]
- Latocha M, Beck P, Rollet S. 2009. AVIDOS-a software package for European accredited aviation Dosimetry. Radiat Prot Dosim 136(4): 286–290. https://doi.org/10.1093/rpd/ncp126. [CrossRef] [Google Scholar]
- Levenberg K. 1944. A method for the solution of certain non-linear problems in least squares. Q Appl Math 2: 164–168. [CrossRef] [Google Scholar]
- Lingenfelter R, Ramaty R. 1970. The neutron moderated detector and the determination of rigidity dependence of protons from the September 1–2, 1971 solar flare. In: Proceedings of the 12th Nobel symposium, Radiocarbon Variations and Absolute Chronology, Almqvist & Wiksell, Stockholm; Wiley Interscience Division, New York, pp. 513–537. [Google Scholar]
- Marquardt D. 1963. An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11(2): 431–441. [CrossRef] [Google Scholar]
- Matthiä D, Heber B, Reitz G, Meier M, Sihver L, Berger T, Herbst K. 2009. Temporal and spatial evolution of the solar energetic particle event on 20 January 2005 and resulting radiation doses in aviation. J Geophys Res Space Phys 114(8): A08104. https://doi.org/10.1029/2009JA014125. [Google Scholar]
- Matthiä D, Meier M, Schennetten K. 2022. New operational dose quantity ambient dose H* in the context of galactic cosmic radiation in aviation. J Radiol Prot 42: 021520. https://doi.org/10.1088/1361-6498/ac5be0. [CrossRef] [Google Scholar]
- Matthiä D, Sihver L, Meier M. 2008. Monte-Carlo calculations of particle fluences and neutron effective dose rates in the atmosphere. Radiat Prot Dosim 131(2): 222–228. https://doi.org/10.1093/rpd/ncn130. [CrossRef] [Google Scholar]
- Meier M, Trompier F, Ambrozova I, Kubancak J, Matthiä D, Ploc O, Santen N, Wirtz M. 2016. CONCORD: Comparison of cosmic radiation detectors in the radiation field at aviation altitudes. J Space Weather Space Clim 6: A24. https://doi.org/10.1051/swsc/2016017. [CrossRef] [EDP Sciences] [Google Scholar]
- Meier MM, Copeland K, Matthiä D, Mertens CJ, Schennetten K. 2018. First steps toward the verification of models for the assessment of the radiation exposure at aviation altitudes during quiet space weather conditions. space weather 16(9): 1269–1276. https://doi.org/10.1029/2018SW001984. [CrossRef] [Google Scholar]
- Mertens C, Meier M, Brown S, Norman R, Xu X. 2013. NAIRAS aircraft radiation model development, dose climatology, and initial validation. Space Weather 11(10): 603–635. https://doi.org/10.1002/swe.20100. [CrossRef] [Google Scholar]
- Miroshnichenko L. 2018. Retrospective analysis of GLEs and estimates of radiation risks. J Space Weather Space Clim 8: A52. https://doi.org/10.1051/swsc/2018042. [CrossRef] [EDP Sciences] [Google Scholar]
- Mishev A. 2023. Application of the global neutron monitor network for assessment of spectra and anisotropy and the related terrestrial effects of strong SEPs. J Atmos Sol-Terr Phys 243: 106021. https://doi.org/10.1016/j.jastp.2023.106021. [CrossRef] [Google Scholar]
- Mishev A, Binios A, Turunen E, Leppänen A-P, Larsen N, Tanskanen E, Usoskin I, Envall J, Iinatti T, Lakkala P. 2022a. Measurements of natural radiation with an MDU Liulin type device at ground and in the atmosphere at various conditions in the Arctic region. Radiat Meas 154: 106757. https://doi.org/10.1016/j.radmeas.2022.106757. [CrossRef] [Google Scholar]
- Mishev A, Jiggens P. 2019. Preface to measurement, specification and forecasting of the Solar Energetic Particle (SEP) environment and Ground Level Enhancements (GLEs). J Space Weather Space Clim 9: E1. https://doi.org/10.1051/swsc/2019003. [CrossRef] [EDP Sciences] [Google Scholar]
- Mishev A, Kocharov L, Koldobskiy S, Larsen N, Riihonen E, Vainio R, Usoskin I. 2022b. High-resolution spectral and anisotropy characteristics of solar protons during the GLE No 73 on 28 October 2021 derived with neutron-monitor data analysis. Solar Phys 297(7): 88. https://doi.org/10.1007/s11207-02202026-0. [CrossRef] [Google Scholar]
- Mishev A, Koldobskiy S, Kocharov L, Usoskin I. 2021a. GLE # 67 event on 2 November 2003: An analysis of the spectral and anisotropy characteristics using verified yield function and detrended neutron monitor data. Solar Phys 296(5): 79. https://doi.org/10.1007/s11207-021-01832-2. [CrossRef] [Google Scholar]
- Mishev A, Koldobskiy S, Usoskin I, Kocharov L, Kovaltsov G. 2021b. Application of the verified neutron monitor yield function for an extended analysis of the GLE #71 on 17 May 2012. Space. Weather 19(2): e2020SW002626. https://doi.org/10.1029/2020SW002626. [CrossRef] [Google Scholar]
- Mishev A, Mavrodiev S, Stamenov J. 2005. Gamma rays studies based on atmospheric Cherenkov technique at high mountain altitude. Int J Mod Phys A 20(29): 7016–7019. https://doi.org/10.1142/S0217751X05030727. [CrossRef] [Google Scholar]
- Mishev A, Poluianov S. 2021. About the altitude profile of the atmospheric cut-off of cosmic rays: new revised assessment. Solar Phys 296(8): 129. https://doi.org/10.1007/s11207-021-01875-5. [CrossRef] [Google Scholar]
- Mishev A, Tuohino S, Usoskin I. 2018a. Neutron monitor count rate increase as a proxy for dose rate assessment at aviation altitudes during GLEs. J Space Weather Space Clim 8: A46. https://doi.org/10.1051/swsc/2018032. [CrossRef] [EDP Sciences] [Google Scholar]
- Mishev A, Usoskin I. 2015. Numerical model for computation of effective and ambient dose equivalent at flight altitudes: Application for dose assessment during GLEs. J Space Weather Space Clim 5(3): A10. https://doi.org/10.1051/swsc/2015011. [CrossRef] [EDP Sciences] [Google Scholar]
- Mishev A, Usoskin I. 2018. Assessment of the radiation environment at commercial jet-flight altitudes during GLE 72 on 10 September 2017 using neutron monitor data. Space Weather 16(12): 1921–1929. https://doi.org/10.1029/2018SW001946. [CrossRef] [Google Scholar]
- Mishev A, Usoskin I, Raukunen O, Paassilta M, Valtonen E, Kocharov L, Vainio R. 2018b. First analysis of GLE 72 event on 10 September 2017: spectral and anisotropy characteristics. Solar Phys 293: 136. https://doi.org/10.1007/s11207-018-1354-x. [CrossRef] [Google Scholar]
- Mishev AL, Koldobskiy SA, Kovaltsov GA, Gil A, Usoskin IG. 2020. Updated neutron-monitor yield function: bridging between in situ and ground-based cosmic ray measurements. J Geophys Res Space Phys 125(2): e2019JA027433. https://doi.org/10.1029/2019JA027433. [CrossRef] [Google Scholar]
- Miyake F, Nagaya K, Masuda K, Nakamura T. 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486: 240–242. https://doi.org/10.1038/nature11123. [NASA ADS] [CrossRef] [Google Scholar]
- Miyake F, Usoskin I, Poluianov S. 2019. Extreme Solar Particle Storms; The hostile Sun. 2514-3433. IOP Publishing, Bristol, UK. https://doi.org/10.1088/2514-3433/ab404a. ISBN 978-0-7503-2232-4. [CrossRef] [Google Scholar]
- Moraal H, McCracken K. 2012. The time structure of ground level enhancements in solar cycle 23. Space Sci Rev 171(1–4): 85–95. https://doi.org/10.1007/s11214-011-9742-7. [CrossRef] [Google Scholar]
- Nevalainen J, Usoskin I, Mishev A. 2013. Eccentric dipole approximation of the geomagnetic field: Application to cosmic ray computations. Adv Space Res 52(1): 22–29. https://doi.org/10.1016/j.asr.2013.02.020. [CrossRef] [Google Scholar]
- Nuntiyakul W, Sáiz A, Ruffolo D, Mangeard P-S, Evenson P, Bieber J, Clem J, Pyle R, Duldig M, Humble J. 2018. Bare neutron counter and neutron monitor response to cosmic rays during a 1995 latitude survey. J Geophys Res Space Phys 123(9): 7181–7195. https://doi.org/10.1029/2017JA025135. [CrossRef] [Google Scholar]
- Panovska S, Korte M, Constable C. 2019. One hundred thousand years of geomagnetic field evolution. Rev Geophys 57(4): 1289–1337. https://doi.org/10.1029/2019RG000656. [CrossRef] [Google Scholar]
- Paschalis P, Mavromichalaki H, Dorman L, Plainaki C, Tsirigkas D. 2014. Geant4 software application for the simulation of cosmic ray showers in the Earth’s atmosphere. New Astron 33: 26–37. https://doi.org/10.1016/j.newast.2014.04.009. [CrossRef] [Google Scholar]
- Pelliccioni M. 2000. Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the FLUKA code. Radiat Prot Dosim 88(4): 279–297. https://doi.org/10.1093/oxfordjournals.rpd.a033046. [CrossRef] [Google Scholar]
- Petoussi-Henss N, Bolch W, Eckerman K, Endo A, Hertel N, Hunt J, Pelliccioni M, Schlattl H, Zankl M. 2010. Conversion coefficients for radiological protection quantities for external radiation exposures. Ann ICRP 40(2–5): 1–257. [CrossRef] [Google Scholar]
- Picone JM, Hedin AE, Drob DP, Aikin AC. 2002. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res Space Phys 107(12): 1468. https://doi.org/10.1029/2002JA009430. [Google Scholar]
- Poluianov S, Usoskin I, Mishev A, Shea M, Smart D. 2017. GLE and sub-GLE redefinition in the light of high-altitude polar neutron monitors. Solar Phys 292(11): 176. https://doi.org/10.1007/s11207-017-1202-4. [CrossRef] [Google Scholar]
- Potgieter M. 2013. Solar modulation of cosmic rays. Living Rev Solar Phys 10: 3. https://doi.org/10.12942/lrsp-2013-3. [CrossRef] [Google Scholar]
- Pulkkinen T. 2007. Space weather: terrestrial perspective. Living Rev Solar Phys 4(1): 1–60. https://doi.org/10.12942/lrsp-2007-1. [CrossRef] [Google Scholar]
- Reames D. 2013. The two sources of solar energetic particles. Space Sci Rev 175(1–4): 53–92. https://doi.org/10.1007/s11214-013-9958-9. [CrossRef] [Google Scholar]
- Schwenn R. 2006. Space weather: the solar perspective. Living Rev Solar Phys 3: 1. https://doi.org/10.12942/lrsp-2006-2. [CrossRef] [Google Scholar]
- Shea M, Smart D. 1982. Possible evidence for a rigidity-dependent release of relativistic protons from the solar corona. Space Sci Rev 32: 251–271. https://doi.org/10.1007/BF00225188. [Google Scholar]
- Shea M, Smart D. 2000. Fifty years of cosmic radiation data. Space Sci Rev 93(1–2): 229–262. https://doi.org/10.1023/A:1026500713452. [CrossRef] [Google Scholar]
- Shea M, Smart D. 2012. Space weather and the ground-level solar proton events of the 23rd solar cycle. Space Sci Rev 171: 161–188. https://doi.org/10.1007/s11214-012-9923-z. [CrossRef] [Google Scholar]
- Simpson J. 2000. The cosmic ray nucleonic component: the invention and scientific uses of the neutron monitor. Space Sci Rev 93: 11–32. https://doi.org/10.1023/A:1026567706183. [CrossRef] [Google Scholar]
- Spurny F, Dachev T. 2001. Measurements in an aircraft during an Intense solar flare, ground level event 60, on April 15, 2001. Radiat Prot Dosim 95(3): 273–275. https://doi.org/10.1093/oxfordjournals.rpd.a006552. [CrossRef] [Google Scholar]
- Spurny F, Dachev T, Kudela K. 2002. Increase of onboard aircraft exposure level during a solar flare. Nuclear Energy Safety 10(48): 396–400. [Google Scholar]
- Sukhodolov T, Usoskin I, Rozanov E, Asvestari E, Ball WT, et al. 2017. Atmospheric impacts of the strongest known solar particle storm of 775 AD. Sci Rep 7: 45257. https://doi.org/10.1038/srep45257. [CrossRef] [Google Scholar]
- Tikhonov A, Goncharsky A, Stepanov V, Yagola A. 1995. Numerical methods for solving ill-posed problems. Kluwer Academic Publishers, Dordrecht. ISBN 978-90-481-4583-6. [CrossRef] [Google Scholar]
- Tuohino S, Ibragimov A, Usoskin I, Mishev A. 2018. Upgrade of GLE database: assessment of effective dose rate at flight altitude. Adv Space Res 62(2): 398–407. https://doi.org/10.1016/j.asr.2018.04.021. [CrossRef] [Google Scholar]
- Usoskin I. 2017. A history of solar activity over millennia. Living Rev Solar Phys 14: 3. https://doi.org/10.1007/s41116-017-0006-9. [CrossRef] [Google Scholar]
- Usoskin I, Alanko-Huotari K, Kovaltsov G, Mursula K. 2005. Heliospheric modulation of cosmic rays: monthly reconstruction for 1951–2004. J Geophys Res 110: A12108. https://doi.org/10.1029/2005JA011250. [CrossRef] [Google Scholar]
- Usoskin I, Gil A, Kovaltsov G, Mishev A, Mikhailov V. 2017. Heliospheric modulation of cosmic rays during the neutron monitor era: calibration using PAMELA data for 2006–2010. J Geophys Res 122: 3875–3887. https://doi.org/10.1002/2016JA023819. [CrossRef] [Google Scholar]
- Usoskin I, Koldobskiy S, Kovaltsov G, Gil A, Usoskina I, Willamo T, Ibragimov A. 2020a. Revised GLE database: fluences of solar energetic particles as measured by the neutron-monitor network since 1956. A&A 640: 2038272. https://doi.org/10.1051/0004-6361/202038272. [Google Scholar]
- Usoskin IG, Koldobskiy SA, Kovaltsov GA, Rozanov EV, Sukhodolov TV, Mishev AL, Mironova IA. 2020b. Revisited reference solar proton event of 23 February 1956: assessment of the cosmogenic-isotope method sensitivity to extreme solar events. J Geophys Res Space Phys 125(6): e2020JA027921. https://doi.org/10.1029/2020JA027921. [CrossRef] [Google Scholar]
- Usoskin IG, Kovaltsov GA. 2021. Mind the gap: new precise 14C data indicate the nature of extreme solar particle events. Geophys Res Lett 48(17): e2021GL094848. https://doi.org/10.1029/2021GL094848. [CrossRef] [Google Scholar]
- Usoskin IG, Kromer B, Ludlow F, Beer J, Friedrich M, Kovaltsov GA, Solanki SK, Wacker L. 2013. The AD775 cosmic event revisited: the Sun is to blame. A&A 552: L3. https://doi.org/10.1051/0004-6361/201321080. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Usoskin IG, Solanki SK, Krivova N, Hofer B, Kovaltsov GA, Wacker L, Brehm N, Kromer B. 2021. Solar cyclic activity over the last millennium reconstructed from annual 14C data. A&A 649: A141. https://doi.org/10.1051/0004-6361/202140711. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Uusitalo J, Arppe L, Hackman T, Helama S, Kovaltsov G, et al. 2018. Solar superstorm of AD 774 recorded subannually by Arctic tree rings. Nat Commun 9(1): 3495. https://doi.org/10.1038/s41467-01805883-1. [CrossRef] [Google Scholar]
- Vainio R, Desorgher L, Heynderickx D, Storini M, Flückiger E, et al. 2009. Dynamics of the Earth’s particle radiation environment. Space Sci Rev 147(3–4): 187–231. https://doi.org/10.1007/s11214-009-9496-7. [CrossRef] [Google Scholar]
- Vashenyuk E, Balabin Y, Miroshnichenko L. 2008. Relativistic solar protons in the ground level event of 23 February 1956: New study. Adv Space Res 41(6): 926–935. https://doi.org/10.1016/j.asr.2007.04.063. [CrossRef] [Google Scholar]
- Vashenyuk E, Balabin Y, Perez-Peraza J, Gallegos-Cruz A, Miroshnichenko L. 2006. Some features of the sources of relativistic particles at the Sun in the solar cycles 21–23. Adv Space Res 38(3): 411–417. https://doi.org/10.1016/j.asr.2005.05.012. [CrossRef] [Google Scholar]
- Vos E, Potgieter M. 2015. New modeling of galactic proton modulation during the minimum of solar cycle 23–24. Astrophys J 815: 119. https://doi.org/10.1088/0004-637X/815/2/119. [CrossRef] [Google Scholar]
- Yang Z, Sheu R. 2020. An in-depth analysis of aviation route doses for the longest distance flight from Taiwan. Radiat Phys Chem 168: 108548. https://doi.org/10.1016/j.radphyschem.2019.108548. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.