Open Access
Issue |
J. Space Weather Space Clim.
Volume 13, 2023
|
|
---|---|---|
Article Number | 23 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/swsc/2023022 | |
Published online | 09 October 2023 |
- Angling MJ, Nogués-Correig O, Nguyen V, Vetra-Carvalho S, Bocquet F-X, Nordstrom K, Melville SE, Savastano G, Mohanty S, Masters D. 2021. Sensing the ionosphere with the Spire radio occultation constellation. J Space Weather Space Clim 11(56). https://doi.org/10.1051/swsc/2021040. [CrossRef] [EDP Sciences] [Google Scholar]
- Ao C. 2009. Atmospheric sensing using GNSS occultations. In: GNSS applications and methods, Gleason S, Gebre-Egziabher D, (Eds.), Artech House, Norwood, MA, USA, pp. 381–395. [Google Scholar]
- Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang X. 2017. International reference ionosphere 2016: from ionospheric climate to real-time weather predictions. Space Weather 15(2): 418–429. https://doi.org/10.1002/2016SW001593. [CrossRef] [Google Scholar]
- Bilitza D, Pezzopane M, Truhlik V, Altadill D, Reinisch BW, Pignalberi A. 2022. The international reference ionosphere model: a review and description of an ionospheric benchmark. Rev Geophys. 60(4): e2022RG000792. https://doi.org/10.1029/2022rg000792. [CrossRef] [Google Scholar]
- Cherniak IV, Zakharenkova IE. 2014. Validation of FORMOSAT-3/COSMIC radio occultation electron density profiles by incoherent scatter radar data. Adv Space Res 53(9): 1304–1312. https://doi.org/10.1016/j.asr.2014.02.010. [CrossRef] [Google Scholar]
- Cherniak I, Zakharenkova I. 2019. Evaluation of the IRI-2016 and NeQuick electron content specification by COSMIC GPS radio occultation, ground-based GPS and Jason-2 joint altimeter/GPS observations. Adv Space Res 63(6): 1845–1859. https://doi.org/10.1016/j.asr.2018.10.036. [CrossRef] [Google Scholar]
- Cherniak I, Zakharenkova I, Braun J, Wu Q, Pedatella N, Schreiner W, Weiss J-P, Hunt D. 2021. Accuracy assessment of the quiet-time ionospheric F2 peak parameters as derived from COSMIC-2 multi-GNSS radio occultation measurements. J Space Weather Space Clim. 11: 18. https://doi.org/10.1051/swsc/2020080. [CrossRef] [EDP Sciences] [Google Scholar]
- Garcia-Fernandez M, Hernandez-Pajares M, Juan JM, Sanz J. 2005. Performance of the improved Abel transform to estimate electron density profiles from GPS occultation data. GPS Solut 9(2): 105–110. https://doi.org/10.1007/s10291-005-0139-5. [CrossRef] [Google Scholar]
- Gleason S, Cherniak I, Zakharenkova I, Hunt D, Sokolovskiy S et al. 2022. The first atmospheric radio occultation profiles from a GPS receiver in geostationary orbit. IEEE Geosci Remote Sens Lett 19: 1–5. https://doi.org/10.1109/LGRS.2022.3185828. [CrossRef] [Google Scholar]
- Habarulema JB, Katamzi ZT, Yizengaw E. 2014. A simultaneous study of ionospheric parameters derived from FORMOSAT-3/COSMIC, GRACE, and CHAMP missions over middle, low, and equatorial latitudes: comparison with ionosonde data. J Geophys Res Space Phys 119(9): 7732–7744. https://doi.org/10.1002/2014JA020192. [CrossRef] [Google Scholar]
- Hajj GA, Romans LJ. 1998. Ionospheric electron density profiles obtained with the global positioning system: results from the GPS/MET experiment. Radio Sci 33(1): 175–190. https://doi.org/10.1029/97RS03183. [CrossRef] [Google Scholar]
- Hochegger G, Leitinger R. 2000. Inversions of satellite to satellite electron content: simulation studies with NeUoG-plas. Phys Chem Earth) 25(4): 353–357. https://doi.org/10.1016/S1464-1917(00)00031-3. [Google Scholar]
- Jakowski N, Wehrenpfennig A, Heise S, Reigber Ch, Lühr H, Grunwaldt L, Meehan TK. 2002. GPS radio occultation measurements of the ionosphere from CHAMP: Early results. Geophys Res Lett 29(10): 95-1–95-4. https://doi.org/10.1029/2001gl014364. [CrossRef] [Google Scholar]
- Jakowski N, Leitinger R, Angling MJ. 2009. Radio occultation techniques for probing the ionosphere. Ann Geophys 47(2–3): 1049–1066. https://doi.org/10.4401/ag-3285. [Google Scholar]
- Kelley MC, Wong VK, Aponte N, Coker C, Mannucci AJ, Komjathy A. 2009. Comparison of COSMIC occultation-based electron density profiles and TIP observations with Arecibo incoherent scatter radar data. Radio Sci 44: RS4011. https://doi.org/10.1029/2008rs004087. [Google Scholar]
- Krankowski A, Zakharenkova I, Krypiak-Gregorczyk A, Shagimuratov I, Wielgosz P. 2011. Ionospheric electron density observed by FORMOSAT-3/COSMIC over the European region and validated by ionosonde data. J Geod 85(12): 949–964. https://doi.org/10.1007/s00190-011-0481-z. [CrossRef] [Google Scholar]
- Lei J, Syndergaard S, Burns AG, Solomon SC, Wang W, et al. 2007. Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: preliminary results. J Geophys Res Space Phys 112(7): A07308. https://doi.org/10.1029/2006JA012240. [Google Scholar]
- Reinisch BW, Galkin IA, Khmyrov GM, Kozlov A, Bibl K, et al. 2009. New digisonde for research and monitoring applications. Radio Sci 44(1): RS0A24. https://doi.org/10.1029/2008rs004115. [CrossRef] [Google Scholar]
- Reinisch BW, Galkin IA. 2011. Global ionospheric radio observatory (GIRO). Earth Planets Space 63: 377–381. https://doi.org/10.5047/eps.2011.03.001. [CrossRef] [Google Scholar]
- Sadighi S, Jayachandran PT, Jakowski N, MacDougall JW. 2009. Comparison of the CHAMP radio occultation data with the Canadian advanced digital ionosonde in the polar regions. Adv Space Res 44(11): 1304–1308. https://doi.org/10.1016/j.asr.2009.07.016. [CrossRef] [Google Scholar]
- Schreiner WS, Sokolovskiy SV, Rocken C, Hunt DC. 1999. Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci 34(4): 949–966. https://doi.org/10.1029/1999RS900034. [CrossRef] [Google Scholar]
- Schreiner WS, Weiss JP, Anthes RA, Braun J, Chu V, et al. 2020. COSMIC-2 radio occultation constellation: first results. Geophys Res Lett 47(4): e2019GL086841. https://doi.org/10.1029/2019GL086841. [CrossRef] [Google Scholar]
- Shubin VN, Karpachev AT, Tsybulya KG. 2013. Global model of the F2 layer peak height for low solar activity based on GPS radio occultation data. J Atmos Sol-Terr Phys 104: 106–115. https://doi.org/10.1016/j.jastp.2013.08.024. [CrossRef] [Google Scholar]
- Shubin VN. 2015. Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground based Digisonde observations. Adv Space Res 56(5): 916–928. https://doi.org/10.1016/j.asr.2015.05.029. [CrossRef] [Google Scholar]
- Tsai LC, Tsai WH, Schreiner WS, Berkey FT, Liu JY. 2001. Comparisons of GPS/MET retrieved ionospheric electron density and ground based ionosonde data. Earth Planet Space 53: 193–205. https://doi.org/10.1186/BF03352376. [CrossRef] [Google Scholar]
- UCAR COSMIC Program. 2006. COSMIC-1 Data Products Ionospheric Profiles. UCAR/NCAR – COSMIC, Accessed on 20 February 2023. https://doi.org/10.5065/ZD80-KD74. [Google Scholar]
- UCAR COSMIC Program. 2019. COSMIC-2 Data Products Ionospheric Profiles. UCAR/NCAR – COSMIC, Accessed on 20 February 2023. https://doi.org/10.5065/T353-C093. [Google Scholar]
- Zakharenkova I, Cherniak I, Krankowski A, Shagimuratov I. 2014. Cross-hemisphere comparison of mid-latitude ionospheric variability during 1996–2009: Juliusruh vs. Hobart. Adv Space Res 53(2): 175–189. https://doi.org/10.1016/j.asr.2013.10.027. [CrossRef] [Google Scholar]
- Zhang SR, Holt JM. 2008. Ionospheric climatology and variability from long-term and multiple incoherent scatter radar observations: variability. Ann Geophys 26(6): 1525–1537. https://doi.org/10.5194/angeo-26-1525-2008. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.