Open Access
Issue |
J. Space Weather Space Clim.
Volume 13, 2023
|
|
---|---|---|
Article Number | 24 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2023025 | |
Published online | 10 October 2023 |
- Abdu MA, Maruyama T, Batista IS, Saito S, Nakamura M. 2007. Ionospheric responses to the October 2003 superstorm: longitude/local time effects over equatorial low and middle latitudes. J Geophys Res Space Phys 112(A10): A10306. https://doi.org/10.1029/2006JA012228. [Google Scholar]
- Balan N, Shiokawa K, Otsuka Y, Watanabe S, Bailey GJ. 2009. Super plasma fountain and equatorial ionization anomaly during penetration electric field. J Geophys Res Space Phys 114(A3): A03310. https://doi.org/10.1029/2008JA013768. [Google Scholar]
- Baumjohann W, Kamide Y. 1984. Hemispherical Joule heating and the AE indices. J Geophys Res Space Phys 89(A1): 383–388. https://doi.org/10.1029/JA089iA01p00383. [CrossRef] [Google Scholar]
- Belehaki A, Tsagouri I, Kutiev I, Marinov P, Zolesi B, et al. 2015. The European Ionosonde Service: nowcasting and forecasting ionospheric conditions over Europe for the ESA Space Situational Awareness services. J Space Weather Space Clim 5: A25. https://doi.org/10.1051/swsc/2015026. [CrossRef] [EDP Sciences] [Google Scholar]
- Blanc M, Richmond AD. 1980. The ionospheric disturbance dynamo. J Geophys Res Space Phys 85(A4): 1669–1686. https://doi.org/10.1029/JA085iA04p01669. [CrossRef] [Google Scholar]
- Borries C, Jakowski N, Wilken V. 2009. Storm induced large scale TIDs observed in GPS derived TEC. Ann Geophys 27(4): 1605–1612. https://doi.org/10.5194/angeo-27-1605-2009. [CrossRef] [Google Scholar]
- Bravo MA, Batista IS, Souza JR, Foppiano AJ. 2019. Ionospheric response to disturbed winds during the 29 October 2003 geomagnetic storm in the Brazilian sector. J Geophys Res Space Phys 124(11): 9405–9419. https://doi.org/10.1029/2019JA027187. [CrossRef] [Google Scholar]
- Buonsanto MJ. 1999. Ionospheric storms – a review. Space Sci Rev 88(3–4): 563–601. https://doi.org/10.1023/a:1005107532631. [CrossRef] [Google Scholar]
- Burlaga L, Sittler E, Mariani F, Schwenn AR. 1981. Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J Geophys Res Space Phys 86(A8): 6673–6684. https://doi.org/10.1029/JA086iA08p06673. [CrossRef] [Google Scholar]
- Burlaga LF, Klein L, Sheeley NR Jr, Michels DJ, Howard RA, Koomen MJ, Schwenn R, Rosenbauer H. 1982. A magnetic cloud and a coronal mass ejection. Geophys Res Lett 9(12): 1317–1320. https://doi.org/10.1029/GL009i012p01317. [CrossRef] [Google Scholar]
- Burnside RG, Tepley CA, Sulzer MP, Fuller-Rowell TJ, Torr DG, Roble RG. 1991. The neutral thermosphere at Arecibo during geomagnetic storms. J Geophys Res Space Phys 96(A2): 1289–1301. https://doi.org/10.1029/90JA01595. [CrossRef] [Google Scholar]
- Deng Y, Fuller-Rowell TJ, Akmaev RA, Ridley AJ. 2011. Impact of the altitudinal Joule heating distribution on the thermosphere. J Geophys Res Space Phys 116(A5): A05313. https://doi.org/10.1029/2010JA016019. [Google Scholar]
- Fagundes PR, Sahai Y, Bittencourt JA, Takahashi H. 1995. Observations of thermospheric neutral winds and temperatures at Cachoeira Paulista (23 °S, 45 °W) during a geomagnetic storm. Adv Space Res 16(5): 27–30. https://doi.org/10.1016/0273-1177(95)00169-F. [CrossRef] [Google Scholar]
- Fagundes PR, Cardoso FA, Fejer BG, Venkatesh K, Ribeiro BA, Pillat VG. 2016. Positive and negative GPS-TEC ionospheric storm effects during the extreme space weather event of March 2015 over the Brazilian sector. J Geophys Res Space Phys 121(6): 5613–5625. https://doi.org/10.1002/2015JA022214. [CrossRef] [Google Scholar]
- Forbes JM, Oberheide J, Zhang X, Cullens C, Englert CR, Harding BJ, Harlander JM, Marr KD, Makela JJ, Immel TJ. 2022. Vertical coupling by solar semidiurnal tides in the thermosphere from ICON/MIGHTI measurements. J Geophys Res Space Phys 127(5): e2022JA030288. https://doi.org/10.1029/2022JA030288. [CrossRef] [Google Scholar]
- Foster JC, Erickson PJ, Coster AJ, Goldstein J, Rich FJ. 2002. Ionospheric signatures of plasmaspheric tails. Geophys Res Lett 29(13): 1-1–1-4. https://doi.org/10.1029/2002GL015067. [CrossRef] [Google Scholar]
- Foster JC, Erickson PJ, Coster AJ, Thaller S, Tao J, Wygant JR, Bonnell JW. 2014. Storm time observations of plasmasphere erosion flux in the magnetosphere and ionosphere. Geophys Res Lett 41(3): 762–768. https://doi.org/10.1002/2013GL059124. [CrossRef] [Google Scholar]
- Fuller-Rowell TJ, Codrescu MV, Moffett RJ, Quegan S. 1994. Response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res Space Phys 99(A3): 3893–3914. https://doi.org/10.1029/93JA02015. [CrossRef] [Google Scholar]
- Fuller-Rowell TJ, Codrescu MV, Roble RG, Richmond AD. 1997. How does the thermosphere and ionosphere react to a geomagnetic storm?. In: Magnetic Storms, vol. 98 geophysical monograph, Tsurutani BT, Gonzales WD, Kamide Y, Arballo JK (Eds.) American Geophysical Union, Washington, DC. pp. 203–225. ISBN: 9781118664612. https://doi.org/10.1029/GM098p0203. [Google Scholar]
- Goldstein J, Sandel BR. 2005. The global pattern of evolution of plasmaspheric drainage plumes. In: Inner magnetosphere interactions: new perspectives from imaging, vol. 159, geophysical monograph series, Burch J, Schulz M, Spence H (Eds.), American Geophysical Union, Washington, DC. pp. 1–22. ISBN: 9781118666128. https://doi.org/10.1029/159GM02. [Google Scholar]
- Haerendel G. 1972. Electric fields and their effects in the ionosphere. In: The Upper Atmosphere: Part IV of Solar-Terrestrial Physics/1970 Comprising the Proceedings of the International Symposium on Solar-Terrestrial Physics Held in Leningrad, USSR87-116, Bowhill SA, Dyer ER, (Eds.), Springer Netherlands, pp. 87–116. https://doi.org/10.1007/978-94-010-3132-5_6. [Google Scholar]
- Idosa C, Shogile K. 2023. Variations of ionospheric TEC due to coronal mass ejections and geomagnetic storm over New Zealand. New Astron 99: 101961. https://doi.org/10.1016/j.newast.2022.101961. [CrossRef] [Google Scholar]
- Kelley MC, Vlasov MN, Foster JC, Coster AJ. 2004. A quantitative explanation for the phenomenon known as storm-enhanced density. Geophys Res Lett 31(19): L19809. https://doi.org/10.1029/2004GL020875. [CrossRef] [Google Scholar]
- Knipp DJ, Tobiska WK, Emery BA. 2004. Direct and indirect thermospheric heating sources for solar cycles 21–23. Solar Phys 224(1): 495–505. https://doi.org/10.1007/s11207-005-6393-4. [CrossRef] [Google Scholar]
- Li X, Wang Y, Guo J, Lyu S. 2022. Solar energetic particles produced during two fast coronal mass ejections. Astrophys J Lett 928(1): L6. https://doi.org/0.3847/2041-8213/ac5b72. [CrossRef] [Google Scholar]
- Lin CH, Richmond AD, Heelis RA, Bailey GJ, Lu G, Liu JY, Yeh HC, Su SY. 2005. Theoretical study of the low-and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: relative importance of the neutral wind and the electric field. J Geophys Res Space Phys 110(A12): A12312. https://doi.org/10.1029/2005JA011304. [CrossRef] [Google Scholar]
- Loutfi A, Bounhir A, Pitout F, Benkhaldoun Z, Makela JJ. 2020. Thermospheric neutral winds above the Oukaimeden Observatory: effects of geomagnetic activity. J Geophys Res Space Phys 125(7): e2019JA027383. https://doi.org/10.1029/2019JA027383. [CrossRef] [Google Scholar]
- Lu G, Richmond AD, Roble RG, Emery BA. 2001. Coexistence of ionospheric positive and negative storm phases under northern winter conditions: A case study. J Geophys Res Space Phys 106(A11): 24493–24504. https://doi.org/10.1029/2001JA000003. [CrossRef] [Google Scholar]
- Lu G, Goncharenko LP, Richmond AD, Roble RG, Aponte N. 2008. A dayside ionospheric positive storm phase driven by neutral winds. J Geophys Res Space Phys 113(A8): A08304. https://doi.org/10.1029/2007JA012895. [Google Scholar]
- Lu G, Goncharenko L, Nicolls MJ, Maute A, Coster A, Paxton LJ. 2012. Ionospheric and thermospheric variations associated with prompt penetration electric fields. J Geophys Res Space Phys 117(A8): A08312. https://doi.org/10.1029/2012JA017769. [Google Scholar]
- Lu G, Huba JD, Valladares C. 2013. Modeling ionospheric super-fountain effect based on the coupled TIMEGCM-SAMI3. J Geophys Res Space Phys 118(5): 2527–2535. https://doi.org/10.1002/jgra.50256. [CrossRef] [Google Scholar]
- Lugaz N, Temmer M, Wang Y, Farrugia CJ. 2017. The interaction of successive coronal mass ejections: a review. Solar Phys 292: 1–37. https://doi.org/10.1007/s11207-017-1091-6. [CrossRef] [Google Scholar]
- Malki K, Bounhir A, Benkhaldoun Z, Makela JJ, Vilmer N, Fisher DJ, Kaab M, Elbouyahyaoui K, Harding BJ, Laghriyeb A, Daassou A. 2018. Ionospheric and thermospheric response to the 27–28 February 2014 geomagnetic storm over North Africa. Ann Geophys 36(4): 987–998. https://doi.org/10.5194/angeo-36-987-2018. [CrossRef] [Google Scholar]
- Nishimura Y, Goldstein J, Martinis C, Ma Q, Li W, Zhang SR, Coster AJ, Mrak S, Semeter JL, Nishitani N, Ruohoniemi JM. 2022. Multi-scale density structures in the plasmaspheric plume during a geomagnetic storm. J Geophys Res Space Phys 127(3): e2021JA030230. https://doi.org/10.1029/2021JA030230. [CrossRef] [Google Scholar]
- Oyedokun DT, Cilliers PJ. 2018. Geomagnetically induced currents: A threat to modern power systems. In: Classical and recent aspects of power system optimization 2018 Jan 1, Zobaa AF, Abdel Aleem SHE, Abdelaziz AY, (Eds.), Academic Press. pp. 421–462. https://doi.org/10.1016/B978-0-12-812441-3.00016-1. [CrossRef] [Google Scholar]
- Prölss G. 2012. Physics of the Earth’s space environment: an introduction. Springer Science & Business Media. ISBN: 9783642971235. [Google Scholar]
- Reinisch BW, Galkin IA. 2011. Global ionospheric radio observatory (GIRO). Earth Planets Space 63: 377–381. https://doi.org/10.5047/eps.2011.03.001. [CrossRef] [Google Scholar]
- Ren X, Mei D, Liu H, Zhang X. 2022. Investigation on horizontal and vertical traveling ionospheric disturbances propagation in global-scale using GNSS and multi-LEO satellites. Space Weather 20(5): e2022SW003041. https://doi.org/10.1029/2022SW003041. [CrossRef] [Google Scholar]
- Richmond AD, Matsushita S. 1975. Thermospheric response to a magnetic substorm. J Geophys Res 80(19): 2839–2850. https://doi.org/10.1029/JA080i019p02839. [CrossRef] [Google Scholar]
- Rishbeth H, Rees D, Kaiser TR. 1972. Winds and temperatures in the auroral zone and their relations to geomagnetic activity: discussion. Philos Trans Royal Soc A 271(1217): 573–575. http://www.jstor.org/stable/74114. [Google Scholar]
- Rishbeth H. 1975. F-region storms and thermospheric circulation. J Atmos Terr Phys 37(6–7): 1055–1064. https://doi.org/10.1016/0021-9169(75)90013-6. [CrossRef] [Google Scholar]
- Rishbeth H. 1998. How the thermospheric circulation affects the ionospheric F2-layer. J Atmos Sol Terr Phys 60(14): 1385–1402. https://doi.org/10.1016/S1364-6826(98)00062-5. [CrossRef] [Google Scholar]
- Scherliess L, Fejer BG. 1997. Storm time dependence of equatorial disturbance dynamo zonal electric fields. J Geophys Res Space Phys 102(A11): 24037–24046. https://doi.org/10.1029/97JA02165. [CrossRef] [Google Scholar]
- Scolini C, Chané E, Temmer M, Kilpua EK, Dissauer K, Veronig AM, Palmerio E, Pomoell J, Dumbović M, Guo J, Rodriguez L. 2020. CME–CME interactions as sources of CME geoeffectiveness: The formation of the complex ejecta and intense geomagnetic storm in 2017 early September. Astrophys J Suppl Ser 247(1): 21. https://doi.org/10.3847/1538-4365/ab6216. [CrossRef] [Google Scholar]
- Singh R, Lee YS, Song SM, Kim YH, Yun JY, Sripathi S, Rajesh B. 2022. Ionospheric density oscillations associated with recurrent prompt penetration electric fields during the space weather event of 4 November 2021 over the East-Asian sector. J Geophys Res Space Phys 127(6): e2022JA030456. https://doi.org/10.1029/2022JA030456. [CrossRef] [Google Scholar]
- Shinbori A, Otsuka Y, Sori T, Tsugawa T, Nishioka M. 2022. Statistical behavior of large-scale ionospheric disturbances from high latitudes to mid-latitudes during geomagnetic storms using 20-yr GNSS-TEC data: dependence on season and storm intensity. J Geophys Res Space Phys 127(1): e2021JA029687. https://doi.org/10.1029/2021JA029687. [CrossRef] [Google Scholar]
- Shiokawa K, Lu G, Otsuka Y, Ogawa T, Yamamoto M, Nishitani N, Sato N. 2007. Ground observation and AMIE-TIEGCM modeling of a storm-time traveling ionospheric disturbance. J Geophys Res Space Phys 112(A5): A05308. https://doi.org/10.1029/2006JA011772. [Google Scholar]
- Smith LB. 1968. An observation of strong thermospheric winds during a geomagnetic storm. J Geophys Res 73(15): 4959–4963. https://doi.org/10.1029/JA073i015p04959. [CrossRef] [Google Scholar]
- Thayer JP, Vickrey JF, Heelis RA, Gary JB. 1995. Interpretation and modeling of the high-latitude electromagnetic energy flux. J Geophys Res Space Phys 100(A10): 19715–19728. https://doi.org/10.1029/95JA01159. [CrossRef] [Google Scholar]
- Wang W, Burns AG, Wiltberger M, Solomon SC, Killeen TL. 2008. Altitude variations of the horizontal thermospheric winds during geomagnetic storms. J Geophys Res Space Phys 113(A2): A02301. https://doi.org/10.1029/2007JA012374. [Google Scholar]
- Wang W, Lei J, Burns AG, Solomon SC, Wiltberger M, Xu J, Zhang Y, Paxton L, Coster A. 2010. Ionospheric response to the initial phase of geomagnetic storms: Common features. J Geophys Res Space Phys 115(A7): A07321. https://doi.org/10.1029/2009JA014461. [Google Scholar]
- Wei S, Ahn BH, Akasofu SI. 1985. The global joule heat production rate and the AE index. Planet Space Sci 33(3): 279–281. https://doi.org/10.1016/0032-0633(85)90059-5. [CrossRef] [Google Scholar]
- Yagi T, Dyson PL. 1985. The response of the mid-latitude thermospheric wind to magnetic activity. Planet Space Sci 33(4): 461–467. https://doi.org/10.1016/0032-0633(85)90090-X. [CrossRef] [Google Scholar]
- Zakharenkova I, Astafyeva E, Cherniak I. 2016. GPS and GLONASS observations of large-scale traveling ionospheric disturbances during the 2015 St. Patrick’s Day storm. J Geophys Res Space Phys 121(12): 12–38. https://doi.org/10.1002/2016JA023332. [CrossRef] [Google Scholar]
- Zhu Q, Lu G, Deng Y. 2022. Low- and mid-latitude ionospheric response to the 2013 St. Patrick’s Day geomagnetic storm in the American sector: global ionosphere thermosphere model simulation. Front Astron Space Sci 9: 124. https://doi.org/10.3389/fspas.2022.916739. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.