Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
|
|
---|---|---|
Article Number | 4 | |
Number of page(s) | 23 | |
DOI | https://doi.org/10.1051/swsc/2024003 | |
Published online | 11 March 2024 |
- Alfonsi L, Cesaroni C, Spogli L, Regi M, Paul A, et al. 2021. Ionospheric disturbances over the Indian sector during 8 September 2017 geomagnetic storm: Plasma structuring and propagation. Space. Weather 19(3): e2020SW002607. https://doi.org/10.1029/2020SW002607. [CrossRef] [Google Scholar]
- Alfonsi L, Wernik AW, Materassi M, Spogli L. 2017. Modelling ionospheric scintillation under the crest of the equatorial anomaly. Adv Space Res 60(8): 1698–1707. https://doi.org/10.1016/j.asr.2017.05.021. [CrossRef] [Google Scholar]
- Belehaki A, Kutiev I, Marinov P, Tsagouri I, Koutroumbas K, Elias P. 2017. Ionospheric electron density perturbations during the 7–10 March 2012 geomagnetic storm period. Adv Space Res 59(4): 1041–1056. https://doi.org/10.1016/j.asr.2016.11.031. [CrossRef] [Google Scholar]
- Bilitza D, Pezzopane M, Truhlik V, Altadill D, Reinisch BW, Pignalberi A. 2022. The International Reference Ionosphere model: A review and description of an ionospheric benchmark. Rev Geophys 60(4): e2022RG000792. https://doi.org/10.1029/2022RG000792. [CrossRef] [Google Scholar]
- Borries C, Mahrous AM, Ellahouny NM, Badeke R. 2016. Multiple ionospheric perturbations during the Saint Patrick's Day storm 2015 in the European-African sector. J Geophys Res Space Phys 121(11): 11–333. https://doi.org/10.1002/2016JA023178. [CrossRef] [Google Scholar]
- Bougard B, Sleewaegen J-M, Spogli L, Veettil SV, Monico JF. 2011. CIGALA: challenging the solar maximum in Brazil with PolaRxS. In: Proceedings of the. ION GNSS 2011, Institute of Navigation, Portland, OR, September 20–23, pp. 2572–2579. Available at http://hdl.handle.net/11449/73031. [Google Scholar]
- Cesaroni C, Spogli L, De Franceschi G. 2021. IONORING: Real-time monitoring of the total electron content over Italy. Remote Sens 13(16): 3290. https://doi.org/10.3390/rs13163290. [CrossRef] [Google Scholar]
- Cesaroni C, Spogli L, Alfonsi L, De Franceschi G, Ciraolo L, et al. 2015. L-band scintillations and calibrated total electron content gradients over Brazil during the last solar maximum. J Space Weather Space Clim 5: A36. https://doi.org/10.1051/swsc/2015038. [CrossRef] [EDP Sciences] [Google Scholar]
- Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella SM. 2007. Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81(2): 111–120. https://doi.org/10.1007/s00190-006-0093-1. [CrossRef] [Google Scholar]
- D’Angelo G, Piersanti M, Pignalberi A, Coco I, De Michelis P, et al. 2021. Investigation of the physical processes involved in GNSS amplitude scintillations at high latitude: a case study. Remote Sens 13(13): 2493. https://doi.org/10.3390/rs13132493. [CrossRef] [Google Scholar]
- D’Angelo G, Piersanti M, Alfonsi L, Spogli L, Clausen LBN, et al. 2018. The response of high latitude ionosphere to the 2015 St. Patrick’s day storm from in situ and ground based observations. Adv Space Res 62(3): 638–650. https://doi.org/10.1016/j.asr.2018.05.005. [CrossRef] [Google Scholar]
- Dang T, Zhang B, Lei J, Wang W, Burns A, et al. 2021. Azimuthal averaging–reconstruction filtering techniques for finite-difference general circulation models in spherical geometry. Geosci Model Dev 14(2): 859–873. https://doi.org/10.5194/gmd-14-859-2021. [CrossRef] [Google Scholar]
- De Franceschi G, Spogli L, Alfonsi L, Romano V, Cesaroni C, Hunstad I. 2019. The ionospheric irregularities climatology over Svalbard from solar cycle 23. Sci Rep 9(1): 1–14. https://doi.org/10.1038/s41598-019-44829-5. [PubMed] [Google Scholar]
- de Paula ER, Martinon AR, Carrano C, Moraes AO, Neri JA, et al. 2022. Solar flare and radio burst effects on GNSS signals and the ionosphere during September 2017. Radio Sci 57(10): 1–15. https://doi.org/10.1029/2021RS007418. [CrossRef] [Google Scholar]
- Dorrian GD, Wood AG, Ronksley A, Aruliah A, Shahtahmassebi G. 2019. Statistical modeling of the coupled F-region ionosphere-thermosphere at high latitude during polar darkness. J Geophys Res Space Phys 124(2): 1389–1409. https://doi.org/10.1029/2018JA026171. [CrossRef] [Google Scholar]
- Dickinson RE, Ridley EC, Roble RG. 1981. A three-dimensional general circulation model of the thermosphere. J Geophys Res Space Phys 86(A3): 1499–1512. https://doi.org/10.1029/JA086iA03p01499. [CrossRef] [Google Scholar]
- Elvidge S, Granados SR, Angling MJ, Brown MK, Themens DR, Wood AG. 2023. Multi-model ensembles for upper atmosphere models. Space Weather 21(3): e2022SW003356. https://doi.org/10.1029/2022SW003356. [CrossRef] [Google Scholar]
- Elvidge S, Angling MJ. 2019. Using the local ensemble transform Kalman filter for upper atmospheric modelling. J Space Weather Space Clim 9: A30. https://doi.org/10.1051/swsc/2019018. [CrossRef] [EDP Sciences] [Google Scholar]
- Enengl F, Kotova D, Jin Y, Clausen LB, Miloch WJ. 2023. Ionospheric plasma structuring in relation to auroral particle precipitation. J Space Weather Space Clim 13: 1. https://doi.org/10.1051/swsc/2022038. [CrossRef] [EDP Sciences] [Google Scholar]
- Fremouw EJ, Leadabrand RL, Livingston RC, Cousins MD, Rino CL, Fair BC, Long RA. 1978. Early results from the DNA Wideband satellite experiment – complex-signal scintillation. Radio Sci 13(1): 167–187. https://doi.org/10.1029/RS013i001p00167. [CrossRef] [Google Scholar]
- Friis-Christensen E, Lühr H, Knudsen D, Haagmans R. 2008. Swarm – an Earth observation mission investigating geospace. Adv Space Res 41(1): 210–216. https://doi.org/10.1016/j.asr.2006.10.008. [CrossRef] [Google Scholar]
- Ghobadi H, Spogli L, Alfonsi L, Cesaroni C, Cicone A, Linty N, Romano V, Cafaro M. 2020. Disentangling ionospheric refraction and diffraction effects in GNSS raw phase through fast iterative filtering technique. GPS Solut 24: 85. https://doi.org/10.1007/s10291-020-01001-1. [CrossRef] [Google Scholar]
- Hagan ME, Forbes JM, Vial F. 1995. On modeling migrating solar tides. Geophys Res Lett 22(8): 893–896. https://doi.org/10.1029/95GL00783. [CrossRef] [Google Scholar]
- INGV RING Working Group. 2016. Rete Integrata Nazionale GPS (RING) [Data set]. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/ring. [Google Scholar]
- Jin Y, Xiong C. 2020. Interhemispheric asymmetry of large-scale electron density gradients in the polar cap ionosphere: UT and seasonal variations. J Geophys Res Space Phys 125: e2019JA027601. https://doi.org/10.1029/2019JA027601. [CrossRef] [Google Scholar]
- Jin Y, Xiong C, Clausen L, Spicher A, Kotova D, et al. 2020. Ionospheric plasma irregularities based on in situ measurements from the Swarm satellites. J Geophys Res Space Phys 125(7): e2020JA028103. https://doi.org/10.1029/2020JA028103. [CrossRef] [Google Scholar]
- Jin Y, Kotova D, Xiong C, Brask SM, Clausen LB, et al. 2022. Ionospheric plasma irregularities – IPIR – data product based on data from the Swarm satellites. J Geophys Res Space Phys 127(4): e2021JA030183. https://doi.org/10.1029/2021JA030183. [Google Scholar]
- Kamal S, Jakowski N, Hoque MM, Wickert J. 2021. A high latitude model for the E Layer dominated ionosphere. Remote Sens 13(18): 3769. https://doi.org/10.3390/rs13183769. [CrossRef] [Google Scholar]
- Kotova D, Jin Y, Spogli L, Wood AG, Urbar J, et al. 2023. Electron density fluctuations from Swarm as a proxy for ground-based scintillation data: a statistical perspective. Adv Space Res 72: 5399–5415. https://doi.org/10.1016/j.asr.2022.11.042. [CrossRef] [Google Scholar]
- Li G, Ning B, Otsuka Y, Abdu MA, Abadi P, et al. 2021. Challenges to equatorial plasma bubble and ionospheric scintillation short-term forecasting and future aspects in east and southeast Asia. Surv Geophys 42(1): 201–238. https://doi.org/10.1007/s10712-020-09613-5. [CrossRef] [Google Scholar]
- Liemohn MW, Shane AD, Azari AR, Petersen AK, Swiger BM, Mukhopadhyay A. 2021. RMSE is not enough: Guidelines to robust data-model comparisons for magnetospheric physics. J Atmos Sol Terr Phys 218: 105624. https://doi.org/10.1016/j.jastp.2021.105624. [CrossRef] [Google Scholar]
- Linty N, Minetto A, Dovis F, Spogli L. 2018. Effects of phase scintillation on the GNSS positioning error during the September 2017 storm at Svalbard. Space Weather 16(9): 1317–1329. https://doi.org/10.1029/2018SW001940. [CrossRef] [Google Scholar]
- MacDougall JW. 1969. The equatorial ionospheric anomaly and the equatorial electrojet. Radio Sci 4(9): 805–810. https://doi.org/10.1029/RS004i009p00805. [CrossRef] [Google Scholar]
- Macho EP, Correia E, Spogli L, Muella MTDAH. 2022. Climatology of ionospheric amplitude scintillation on GNSS signals at south American sector during solar cycle 24. J Atmos Sol Terr Phys 231: 105872. https://doi.org/10.1016/j.jastp.2022.105872. [CrossRef] [Google Scholar]
- Materassi M, Forte B, Coster AJ, Skone S, (Eds.). 2019. The dynamical ionosphere: a systems approach to ionospheric irregularity. Elsevier, Amsterdam, The Netherlands. https://doi.org/10.1016/C2017-0-01069-8. [Google Scholar]
- Maute A. 2017. Thermosphere-ionosphere-electrodynamics general circulation model for the ionospheric connection explorer: TIEGCM-ICON. Space Sci Rev 212(1): 523–551. https://doi.org/10.1007/s11214-017-0330-3. [CrossRef] [Google Scholar]
- McCaffrey AM, Jayachandran PT. 2019. Determination of the refractive contribution to GPS phase “scintillation”. J Geophys Res Space Phys 124(2): 1454–1469. https://doi.org/10.1029/2018JA025759. [CrossRef] [Google Scholar]
- Moen J, Oksavik K, Alfonsi L, Daabakk Y, Romano V, Spogli L. 2013. Space weather challenges of the polar cap ionosphere. J Space Weather Space Clim 3: A02. https://doi.org/10.1051/swsc/2013025. [CrossRef] [EDP Sciences] [Google Scholar]
- Muella MTAH, Duarte-Silva MH, Moraes AO, de Paula ER, de Rezende LFC, Alfonsi L, Affonso BJ. 2017. Climatology and modeling of ionospheric scintillations and irregularity zonal drifts at the equatorial anomaly crest region. Ann Geophys 35: 1201–1218. https://doi.org/10.5194/angeo-35-1201-2017. [CrossRef] [Google Scholar]
- Nava B, Coïsson P, Amarante GM, Azpilicueta F, Radicella SM. 2005. A model assisted ionospheric electron density reconstruction method based on vertical TEC data ingestion. Ann Geophys 48(2): 313–320. http://hdl.handle.net/2122/905. [Google Scholar]
- Nava B, Coisson P, Radicella SM. 2008. A new version of the NeQuick ionosphere electron density model. J Atmos Sol Terr Phys 70(15): 1856–1862. https://doi.org/10.1016/j.jastp.2008.01.015. [CrossRef] [Google Scholar]
- Pezzopane M, Pignalberi A. 2019. The ESA Swarm mission to help ionospheric modeling: a new NeQuick topside formulation for mid-latitude regions. Sci Rep 9: 12253. https://doi.org/10.1038/s41598-019-48440-6. [CrossRef] [Google Scholar]
- Pezzopane M, Pietrella M, Pignalberi A, Tozzi R. 2015. 20 March 2015 solar eclipse influence on sporadic E layer. Adv Space Res 56(10): 2064–2072. https://doi.org/10.1016/j.asr.2015.08.001. [CrossRef] [Google Scholar]
- Piersanti M, Alberti T, Bemporad A, Berrilli F, Bruno R, et al. 2017. Comprehensive analysis of the geoeffective solar event of 21 June 2015: Effects on the magnetosphere, plasmasphere, and ionosphere systems. Solar Phys 292(11): 1–56. https://doi.org/10.1007/s11207-017-1186-0. [CrossRef] [Google Scholar]
- Prikryl P, Spogli L, Jayachandran PT, Kinrade J, Mitchell CN, et al. 2011. Interhemispheric comparison of GPS phase scintillation at high latitudes during the magnetic-cloud-induced geomagnetic storm of 5–7 April 2010. Ann Geophys 29: 2287–2304. https://doi.org/10.5194/angeo-29-2287-2011. [CrossRef] [Google Scholar]
- Priyadarshi S. 2015. A review of ionospheric scintillation models. Surv Geophys 36(2): 295–324. https://doi.org/10.1007/s10712-015-9319-1. [CrossRef] [Google Scholar]
- Qian L, Burns AG, Emery BA, Foster B, Lu G, et al. 2014. The NCAR TIE-GCM: A community model of the coupled thermosphere/ionosphere system. In: Modeling the ionosphere – thermosphere system. Huba J, Schunk R, Khazanov G, (Eds.), John Wiley & Sons, Washington. pp. 73–83. https://doi.org/10.1002/9781118704417.ch7. [CrossRef] [Google Scholar]
- Richmond AD, Ridley EC, Roble RG. 1992. A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys Res Lett 19(6): 601–604. https://doi.org/10.1029/92GL00401. [CrossRef] [Google Scholar]
- Sato H, Jakowski N, Berdermann J, Jiricka K, Heßelbarth A, Banyś D, Wilken V. 2019. Solar radio burst events on 6 September 2017 and its impact on GNSS signal frequencies. Space Weather 17(6): 816–826. https://doi.org/10.1029/2019SW002198. [CrossRef] [Google Scholar]
- Spogli L, Alfonsi L, De Franceschi G, Romano V, Aquino MHO, Dodson A. 2009. Climatology of GPS ionospheric scintillations over high and mid-latitude European regions. Ann Geophys 27: 3429–3437. https://doi.org/10.5194/angeo-27-3429-2009. [CrossRef] [Google Scholar]
- Spogli L, Ghobadi H, Cicone A, Alfonsi L, Cesaroni C, et al. 2021a. Adaptive phase detrending for gnss scintillation detection: a case study over Antarctica. IEEE Geosci Remote Sens Lett 19: 1–5. https://doi.org/10.1109/LGRS.2021.3067727. [Google Scholar]
- Spogli L, Sabbagh D, Regi M, Cesaroni C, Perrone L, Alfonsi L, et al. 2021b. Ionospheric response over Brazil to the August 2018 geomagnetic storm as probed by CSES-01 and Swarm satellites and by local ground-based observations. J Geophys Res Space Phys 126: e2020JA028368. https://doi.org/10.1029/2020JA028368. [CrossRef] [Google Scholar]
- Stankov SM, Bergeot N, Berghmans D, Bolsée D, Bruyninx C, et al. 2017. Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe. J Space Weather Space Clim 7: A19. https://doi.org/10.1051/swsc/2017017. [Google Scholar]
- Tornatore V, Cesaroni C, Pezzopane M, Alizadeh MM, Schuh H. 2021. Performance evaluation of VTEC GIMs for regional applications during different s. Remote Sens 13(8): 1470. https://doi.org/10.3390/rs13081470. [CrossRef] [Google Scholar]
- Upper Atmosphere Physics and Radio Propagation Working Group, Cesaroni C, De Franceschi G, Marcocci C, Pica E, Romano V, Spogli L. 2020. Electronic Space Weather upper atmosphere database (eSWua) – GNSS scintillation data, version 1.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). Available at https://doi.org/10.13127/eswua/gnss. [Google Scholar]
- Urbar J, Spogli L, Cicone A, Clausen LB, Jin Y, et al. 2023. Multi-scale response of the high-latitude topside ionosphere to geospace forcing. Adv Space Res 72: 5490–5502. https://doi.org/10.1016/j.asr.2022.06.045. [CrossRef] [Google Scholar]
- Van Dierendonck AJ, Klobuchar J, Hua Q. 1993. Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. In: Proceedings of the 6th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1993), Salt Lake City, UT, 22–24 September, pp. 1333–1342. [Google Scholar]
- Vanlommel P, Van der Linden R. 2017. STCE newsletter 4 Sep 2017–10 Sep 2017, Solar-Terrestrial Centre of Excellence (STCE). Available at http://www.stce.be/newsletter/ (15 September 2017). [Google Scholar]
- Verhulst TG, Sapundjiev D, Stankov SM. 2016. High-resolution ionospheric observations and modeling over Belgium during the solar eclipse of 20 March 2015 including first results of ionospheric tilt and plasma drift measurements. Adv Space Res 57(11): 2407–2419. https://doi.org/10.1016/j.asr.2016.03.009. [CrossRef] [Google Scholar]
- Vilà-Valls J, Linty N, Closas P, Dovis F, Curran JT. 2020. Survey on signal processing for GNSS under ionospheric scintillation: Detection, monitoring, and mitigation. Navig J Inst Navi 67(3): 511–535. https://doi.org/10.1002/navi.379. [CrossRef] [Google Scholar]
- Wernik AW, Alfonsi L, Materassi M. 2007. Scintillation modeling using in situ data. Radio Sci 42(1): 1–21. https://doi.org/10.1029/2006RS003512. [CrossRef] [Google Scholar]
- Wood AG, Alfonsi L, Clausen LB, Jin Y, Spogli L, et al. 2022. Variability of ionospheric plasma: results from the ESA Swarm mission. Space Sci Rev 218(6): 1–44. https://doi.org/10.1007/s11214-022-00916-0. [CrossRef] [Google Scholar]
- Wood AG, Donegan-Lawley EE, Clausen LBN, Spogli L, Urbář J, et al. 2024. Statistical models of the variability of plasma in the topside ionosphere: Paper 1: formulation and optimisation. J. Space Weather Space Clim. https://doi.org/10.1051/swsc/2024002. [Google Scholar]
- Xiong C, Jiang H, Yan R, Lühr H, Stolle C, Yin F, et al. 2022. Solar flux influence on the in-situ plasma density at topside ionosphere measured by swarm satellites. J Geophys Res Space Phys 127(5): e2022JA030275. https://doi.org/10.1029/2022JA030275. [CrossRef] [Google Scholar]
- Zakharenkova I, Astafyeva E, Cherniak I. 2016. GPS and GLONASS observations of large-scale traveling ionospheric disturbances during the 2015 St. Patrick's Day storm. J Geophys Res Space Phys 121(12): 12138–12156. https://doi.org/10.1002/2016JA023332. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.