Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
Topical Issue - Space Climate: Long-term effects of solar variability on the Earth’s environment
|
|
---|---|---|
Article Number | 5 | |
Number of page(s) | 21 | |
DOI | https://doi.org/10.1051/swsc/2024005 | |
Published online | 19 March 2024 |
- Altschuler MD, Newkirk G. 1969. Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Sol Phys 9: 131–149. https://doi.org/10.1007/BF00145734. [CrossRef] [Google Scholar]
- Arge CN, Henney CJ, Koller J, Compeau CR, Young S, MacKenzie D, Fay A, Harvey JW. 2010. Air force data assimilative photospheric flux transport (ADAPT) model. In: Twelfth international solar wind conference, vol. 1216 of American institute of physics conference series. Maksimovic M, Issautier K, Meyer-Vernet N, Moncuquet M, Pantellini F (Eds.), American Institute of Physics, pp. 343–346. https://doi.org/10.1063/1.3395870. [Google Scholar]
- Arge CN, Pizzo VJ. 2000. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J Geophys Res 105: 10465–10480. https://doi.org/10.1029/1999JA000262. [CrossRef] [Google Scholar]
- Babcock HW. 1961. The topology of the sun’s magnetic field and the 22-year cycle. Astrophys J 133: 572. https://doi.org/10.1086/147060. [CrossRef] [Google Scholar]
- de Toma G. 2011. Evolution of coronal holes and implications for high-speed solar wind during the minimum between cycles 23 and 24. Sol Phys 274: 195–217. https://doi.org/10.1007/s11207-010-9677-2. [CrossRef] [Google Scholar]
- Durrant CJ, Turner JPR, Wilson PR. 2004. The mechanism involved in the reversals of the sun’s polar magnetic fields. Sol Phys 222: 345–362. https://doi.org/10.1023/B:SOLA.0000043577.33961.82. [CrossRef] [Google Scholar]
- Gopalswamy N, Akiyama S, Yashiro S, Xie H, Mäkelä P, Michalek G. 2014. Anomalous expansion of coronal mass ejections during solar cycle 24 and its space weather implications. Geophys Res Lett 41(8): 2673–2680. https://doi.org/10.1002/2014GL059858. [CrossRef] [Google Scholar]
- Gopalswamy N, Yashiro S, Xie H, Akiyama S, Mäkelä P. 2015. Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24. J Geophys Res (Space Phys) 120(11): 9221–9245. https://doi.org/10.1002/2015JA021446. [CrossRef] [Google Scholar]
- Hale GE, Ellerman F, Nicholson SB, Joy AH. 1919. The magnetic polarity of sun-spots. Astrophys J 49: 153. https://doi.org/10.1086/142452. [CrossRef] [Google Scholar]
- Harvey J, Gillespie B, Miedaner P, Slaughter C. 1980. Synoptic solar magnetic field maps for the interval including Carrington Rotation 1601–1680, May 5, 1973 – April 26, 1979, NASA STI/Recon Technical Report N 81, 21,003. [Google Scholar]
- Hill F. 2018. The global oscillation network group facility – an example of research to operations in space weather. Space Weather 16(10): 1488–1497. https://doi.org/10.1029/2018SW002001. [NASA ADS] [CrossRef] [Google Scholar]
- Hoeksema JT. 1984. Structure and evolution of the large scale solar and heliospheric magnetic fields, PhD thesis. Stanford University, CA. [Google Scholar]
- Howard R. 1967. Magnetic field of the sun (observational). Annu Rev Astron Astrophys 5: 1. https://doi.org/10.1146/annurev.aa.05.090167.000245. [CrossRef] [Google Scholar]
- Howard RF. 1989. The magnetic fields of active regions. I – Data and first results. Sol Phys 123: 271–284. https://doi.org/10.1007/BF00149106. [CrossRef] [Google Scholar]
- Keller CU, Harvey JW, Giampapa MS. 2003. SOLIS: an innovative suite of synoptic instruments. In: Innovative telescopes and instrumentation for solar astrophysics Keil SL, Avakyan SV (Eds.), vol. 4853, pp. 194–204. [CrossRef] [Google Scholar]
- Leighton RB. 1964. Transport of magnetic fields on the sun. Astrophys J 140: 1547. https://doi.org/10.1086/148058. [CrossRef] [Google Scholar]
- Leighton RB. 1969. A magneto-kinematic model of the solar cycle. Astrophys J 156: 1. https://doi.org/10.1086/149943. [CrossRef] [Google Scholar]
- Livingston WC, Harvey J, Pierce AK, Schrage D, Gillespie B, Simmons J, Slaughter C. 1976. Kitt peak 60-cm vacuum telescope. Appl Opt 15: 33–39. https://doi.org/10.1364/AO.15.000033. [CrossRef] [Google Scholar]
- Mursula K, Hiltula T. 2003. Bashful ballerina: Southward shifted heliospheric current sheet. Geophys Res Lett 30(22): 2135. https://doi.org/10.1029/2003GL018201. [CrossRef] [Google Scholar]
- Petrie GJD. 2012. Evolution of active and polar photospheric magnetic fields during the rise of cycle 24 compared to previous cycles. Sol Phys 281: 577–598. https://doi.org/10.1007/s11207-012-0117-3. [CrossRef] [Google Scholar]
- Petrie GJD. 2013. Solar magnetic activity cycles, coronal potential field models and eruption rates. Astrophys J 768: 162. https://doi.org/10.1088/0004-637X/768/2/162. [CrossRef] [Google Scholar]
- Petrie GJD. 2015. Solar magnetism in the polar regions. Living Rev Sol Phys 12: 1–102. https://doi.org/10.1007/lrsp-2015-5. [CrossRef] [Google Scholar]
- Petrie GJD. 2022. Solar polar magnetic fields: Comparing full-disk and high-resolution spectromagnetograph data. Astrophys J 941(2): 142. https://doi.org/10.3847/1538-4357/aca1a8. [CrossRef] [Google Scholar]
- Petrie GJD. 2023. Polar photospheric magnetic field evolution and global flux transport. Sol Phys 298(3): 43. https://doi.org/10.1007/s11207-023-02134-5. [CrossRef] [Google Scholar]
- Petrie GJD, Patrikeeva I. 2009. A comparative study of magnetic fields in the solar photosphere and chromosphere at equatorial and polar latitudes. Astrophys J 699: 871–884. https://doi.org/10.1088/0004-637X/699/1/871. [CrossRef] [Google Scholar]
- Schatten KH, Wilcox JM, Ness NF. 1969. A model of interplanetary and coronal magnetic fields. Sol Phys 6: 442–455. https://doi.org/10.1007/BF00146478. [CrossRef] [Google Scholar]
- Scherrer PH, Bogart RS, Bush RI, Hoeksema JT, Kosovichev AG, et al. 1995. The solar oscillations investigation – Michelson doppler imager. Sol Phys 162: 129–188. https://doi.org/10.1007/BF00733429. [CrossRef] [Google Scholar]
- Scherrer PH, Schou J, Bush RI, Kosovichev AG, Bogart RS, et al. 2012. The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Sol Phys 275: 207–227. https://doi.org/10.1007/s11207-011-9834-2. [CrossRef] [Google Scholar]
- Schrijver CJ, De Rosa ML. 2003. Photospheric and heliospheric magnetic fields. Sol Phys 212: 165–200. https://doi.org/10.1023/A:1022908504100. [CrossRef] [Google Scholar]
- Smith EJ, Balogh A. 2008. Decrease in heliospheric magnetic flux in this solar minimum: Recent Ulysses magnetic field observations. Geophys Res Lett 35(22): L22103. https://doi.org/10.1029/2008GL035345. [CrossRef] [Google Scholar]
- Svalgaard L, Duvall TL Jr, Scherrer PH. 1978. The strength of the sun’s polar fields. Sol Phys 58: 225–239. https://doi.org/10.1007/BF00157268. [CrossRef] [Google Scholar]
- Upton L, Hathaway DH. 2014. Predicting the sun’s polar magnetic fields with a surface flux transport model. Astrophys J 780: 5. https://doi.org/10.1088/0004-637X/780/1/5. [Google Scholar]
- Virtanen I, Mursula K. 2016. Photospheric and coronal magnetic fields in six magnetographs. I. Consistent evolution of the bashful ballerina. Astron Astrophys 591: A78. https://doi.org/10.1051/0004-6361/201628096. [CrossRef] [EDP Sciences] [Google Scholar]
- Virtanen I, Mursula K. 2017. Photospheric and coronal magnetic fields in six magnetographs. II. Harmonic scaling of field intensities. Astron Astrophys 604: A7. https://doi.org/10.1051/0004-6361/201730863. [CrossRef] [EDP Sciences] [Google Scholar]
- Virtanen II, Koskela JS, Mursula K. 2020. Abrupt shrinking of solar corona in the late 1990s. Astrophys J Lett 889(2): L28. https://doi.org/10.3847/2041-8213/ab644b. [CrossRef] [Google Scholar]
- Wang Y-M, Sheeley NR Jr. 1992. On potential field models of the solar corona. Astrophys J 392: 310–319. https://doi.org/10.1086/171430. [CrossRef] [Google Scholar]
- Wang YM, Robbrecht E. 2011. Asymmetric sunspot activity and the southward displacement of the heliospheric current sheet. Astrophys J 736(2): 136. https://doi.org/10.1088/0004-637X/736/2/136. [CrossRef] [Google Scholar]
- Whitbread T, Yeates AR, Muñoz-Jaramillo A. 2018. How many active regions are necessary to predict the solar dipole moment? Astrophys J 863(2): 116. https://doi.org/10.3847/1538-4357/aad17e. [CrossRef] [Google Scholar]
- Wiegelmann T, Petrie GJD, Riley P. 2017. Coronal magnetic field models. Space Sci Rev 210(1–4): 249–274. https://doi.org/10.1007/s11214-015-0178-3. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.