Issue |
J. Space Weather Space Clim.
Volume 14, 2024
Topical Issue - CMEs, ICMEs, SEPs: Observational, Modelling, and Forecasting Advances
|
|
---|---|---|
Article Number | 6 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2024004 | |
Published online | 29 March 2024 |
- Aquino M, Sreeja V. 2013. Correlation of scintillation occurrence with interplanetary magnetic field reversals and impact on Global Navigation Satellite System receiver tracking performance. Space Weather 11(5): 219–224. https://doi.org/10.1002/swe.20047. [CrossRef] [Google Scholar]
- Barbieri L, Mahmot R. 2004. October–November 2003’s space weather and operations lessons learned. Space Weather 2(9): S09002. https://doi.org/10.1029/2004SW000064. [CrossRef] [Google Scholar]
- Bobra MG, Ilonidis S. 2016. Predicting coronal mass ejections using machine learning methods. Astrophys J 821(2): 127. https://doi.org/10.3847/0004-637X/821/2/127. [CrossRef] [Google Scholar]
- Brueckner G, Howard R, Koomen M, Korendyke C, Michels D, et al. 1995. The large angle spectroscopic coronagraph (LASCO) visible light coronal imaging and spectroscopy. Sol Phys 162: 357–402. https://doi.org/10.1007/BF00733434. [CrossRef] [Google Scholar]
- Čalogović J, Dumbović M, Sudar D, Vršnak B, Martinić K, Temmer M, Veronig AM. 2021. Probabilistic Drag-Based Ensemble Model (DBEM) evaluation for heliospheric propagation of CMEs. Sol Phys 296(7): 114. https://doi.org/10.1007/s11207-021-01859-5. [CrossRef] [Google Scholar]
- Camporeale E. 2019. The challenge of machine learning in space weather: Nowcasting and forecasting. Space Weather 17(8): 1166–1207. https://doi.org/10.1029/2018SW002061. [Google Scholar]
- Cargill PJ. 2004. On the aerodynamic drag force acting on interplanetary coronal mass ejections. Sol. Phys. 221(1): 135–149. https://doi.org/10.1023/b:sola.0000033366.10725.a2. [CrossRef] [Google Scholar]
- Chen P. 2011. Coronal mass ejections: models and their observational basis. Living Rev Sol Phys 8: 1–92. https://doi.org/10.12942/lrsp-2011-1. [CrossRef] [Google Scholar]
- Del Moro D, Napoletano G, Forte R, Giovannelli L, Pietropaolo E, Berrilli F. 2019. Forecasting the 2018 February 12th CME propagation with the P-DBM model: A fast warning procedure. Ann Geophys 61: GM456. https://doi.org/10.4401/ag-7750. [CrossRef] [Google Scholar]
- Domingo V, Fleck B, Poland AI. 1995. The SOHO mission: An overview. Sol Phys 162: 1–37. https://doi.org/10.1007/BF00733425. [CrossRef] [Google Scholar]
- Dumbović M, Čalogović J, Vršnak B, Temmer M, Mays ML, Veronig A, Piantschitsch I. 2018. The Drag-based Ensemble Model (DBEM) for coronal mass ejection propagation. Astrophys J 854(2): 180. https://doi.org/10.3847/1538-4357/aaaa66. [CrossRef] [Google Scholar]
- Dumbović M, Čalogović J, Martinić K, Vršnak B, Sudar D, Temmer M, Veronig A. 2021. Drag-based model (DBM) tools for forecast of coronal mass ejection arrival time and speed. Front Astron Space Sci 8(639): 986. https://doi.org/10.3389/fspas.2021.639986. [Google Scholar]
- Eyles C, Harrison R, Davis CJ, Waltham N, Shaughnessy B, et al. 2009. The heliospheric imagers onboard the STEREO mission. Sol Phys 254(2): 387–445. https://doi.org/10.1007/s11207-008-9299-0. [CrossRef] [Google Scholar]
- Gopalswamy N, Lara A, Lepping RP, Kaiser ML, Berdichevsky D, St. Cyr OC. 2000. Interplanetary acceleration of coronal mass ejections. Geophys Res Lett 27(2): 145–148. https://doi.org/10.1029/1999GL003639. [CrossRef] [Google Scholar]
- Gopalswamy N. 2009. Coronal mass ejections and space weather. In Climate and Weather of the Sun-Earth System (CAWSES): Selected Papers from the 2007 Kyoto Symposium. Terrapub, Tokyo, Japan, pp. 77–120. http://www.terrapub.co.jp/onlineproceedings/ste/CAWSES2007/index.html. [Google Scholar]
- Gosling J, McComas D, Phillips J, Bame S. 1991. Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections. J Geophys Res Space Phys 96(A5): 7831–7839. https://doi.org/10.1029/91JA00316. [CrossRef] [Google Scholar]
- Howard RA, Moses JD, Vourlidas A, Newmark JS, Socker DG, et al. 2008. Sun earth connection coronal and heliospheric investigation (SECCHI). Space Sci Rev 136(1–4): 67–115. https://doi.org/10.1007/s11214-008-9341-4. [CrossRef] [Google Scholar]
- Ivezić Ž, Connolly AJ, VanderPlas JT, Gray A. 2014. Statistics, data mining, and machine learning in astronomy, Princeton University Press. https://doi.org/10.1515/97814008489110. [Google Scholar]
- Kaiser ML, Kucera TA, Davila JM, St OC, Cyr M Guhathakurta, Christian E. 2008. The STEREO mission: An introduction. Space Sci Rev 136: 5–16. https://doi.org/10.1007/s11214-007-9277-0. [CrossRef] [Google Scholar]
- Koskinen H, Huttunen K. 2006. Geoeffectivity of coronal mass ejections. Space Sci Rev 124: 169–181. https://doi.org/10.1007/s11214-006-9103-0. [Google Scholar]
- Koskinen H, Huttunen K. 2007. Geoeffectivity of coronal mass ejections. In Solar dynamics and its effects on the heliosphere and earth, pp. 169–181. https://doi.org/10.1007/s11214-006-9103-0. [CrossRef] [Google Scholar]
- Liu Y, Thernisien A, Luhmann JG, Vourlidas A, Davies JA, Lin RP, Bale SD. 2010. Reconstructing coronal mass ejections with coordinated imaging and in situ observations: Global structure, kinematics, and implications for space weather forecasting. Astrophys J 722(2): 1762. https://doi.org/10.1088/0004-637X/722/2/1762. [CrossRef] [Google Scholar]
- Liu J, Ye Y, Shen C, Wang Y, Erdélyi R. 2018. A new tool for CME arrival time prediction using machine learning algorithms: CAT-PUMA. Astrophys J 855(2): 109. https://doi.org/10.3847/1538-4357/aaae69. [Google Scholar]
- Manchester W, Kilpua EK, Liu YD, Lugaz N, Riley P, Török T, Vršnak B. 2017. The physical processes of CME/ICME evolution. Space Sci Rev 212: 1159–1219. https://doi.org/10.1007/s11214-017-0394-0. [CrossRef] [Google Scholar]
- Manoharan P. 2006. Evolution of coronal mass ejections in the inner heliosphere: A study using white-light and scintillation images. Sol Phys 235: 345–368. https://doi.org/10.1007/s11207-006-0100-y. [CrossRef] [Google Scholar]
- Mugatwala R, Chierichini S, Francisco G, Napoletano G, Foldes R, Giovannelli L, Gasperis GD, Camporeale E, Erdélyi R, Moro DD. 2023. Wolpes11/PDBM-project-for-ICMEs. https://doi.org/10.5281/zenodo.8063404. [Google Scholar]
- Napoletano G, Forte R, Moro DD, Pietropaolo E, Giovannelli L, Berrilli F. 2018. A probabilistic approach to the drag-based model. J Space Weather Space Clim 8: A11. https://doi.org/10.1051/swsc/2018003. [CrossRef] [EDP Sciences] [Google Scholar]
- Napoletano G, Foldes R, Camporeale E, de Gasperis G, Giovannelli L, Paouris E, Pietropaolo E, Teunissen J, Tiwari AK, Moro DD. 2022. Parameter distributions for the drag-based modeling of CME propagation. Space Weather 20(9): e2021SW002925. https://doi.org/10.1029/2021sw002925. [CrossRef] [Google Scholar]
- Odstrcil D, Vandas M, Pizzo VJ, MacNeice P. 2003. Numerical simulation of interacting magnetic flux ropes. AIP Conf Proc 679: 699–702. https://doi.org/10.1063/1.1618690. [CrossRef] [Google Scholar]
- Paouris E, Mavromichalaki H. 2017. Effective acceleration model for the arrival time of interplanetary shocks driven by coronal mass ejections. Sol Phys 292: 1–11. https://doi.org/10.1007/s11207-017-1212-2. [CrossRef] [Google Scholar]
- Paouris E, Čalogovic J, Dumbović M, Mays ML, Vourlidas A, Papaioannou A, Anastasiadis A, Balasis G. 2021. Propagating conditions and the time of ICME arrival: A comparison of the effective acceleration model with ENLIL and DBEM models. Sol Phys 296(1): 12. https://doi.org/10.1007/s11207-020-01747-4. [CrossRef] [Google Scholar]
- Papaioannou A, Sandberg I, Anastasiadis A, Kouloumvakos A, Georgoulis MK, Tziotziou K, Tsiropoula G, Jiggens P, Hilgers A. 2016. Solar flares, coronal mass ejections and solar energetic particle event characteristics. J Space Weather Space Clim 6: A42. https://doi.org/10.1051/swsc/2016035. [CrossRef] [EDP Sciences] [Google Scholar]
- Piersanti M, Alberti T, Bemporad A, Berrilli F, Bruno R, et al. 2017. Comprehensive analysis of the geoeffective solar event of 21 June 2015: Effects on the magnetosphere, plasmasphere, and ionosphere systems. Sol Phys 292: 1–56. https://doi.org/10.1007/s11207-017-1186-0. [CrossRef] [Google Scholar]
- Pomoell J, Poedts S. 2018. EUHFORIA: European heliospheric forecasting information asset. J Space Weather Space Climate 8: A35. https://doi.org/10.1051/swsc/2018020. [CrossRef] [EDP Sciences] [Google Scholar]
- Pulkkinen T. 2007. Space weather: terrestrial perspective. Living Rev Sol Phys 4: 1–60. https://doi.org/10.12942/lrsp-2007-1. [CrossRef] [Google Scholar]
- Richardson IG, Cane HV. 2010. Near-earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): Catalog andsummary of properties. Sol Phys 264(1): 189–237. https://doi.org/10.1007/s11207-010-9568-6. [CrossRef] [Google Scholar]
- Riley P, Mays ML, Andries J, Amerstorfer T, Biesecker D, et al. 2018. Forecasting the arrival time of coronal mass ejections: analysis of the CCMC CME scoreboard. Space Weather 16(9): 1245–1260. https://doi.org/10.1029/2018sw001962. [CrossRef] [Google Scholar]
- Rollett T, Möstl C, Isavnin A, Davies JA, Kubicka M, Amerstorfer UV, Harrison RA. 2016. ElEvoHI: A novel CME prediction tool for heliospheric imaging combining an elliptical front with drag-based model fitting. Astrophys J 824(2): 131. https://doi.org/10.3847/0004-637X/824/2/13. [CrossRef] [Google Scholar]
- Sachdeva N, Subramanian P, Colaninno R, Vourlidas A. 2015. CME propagation: Where does aerodynamic drag “take over”? Astrophys J 809(2): 158. https://doi.org/10.1088/0004-637x/809/2/158. [CrossRef] [Google Scholar]
- Sachdeva N, Subramanian P, Vourlidas A, Bothmer V. 2017. CME dynamics using STEREO and LASCO observations: The relative importance of Lorentz forces and solar wind drag. Sol Phys 292(9): 118. https://doi.org/10.1007/s11207-017-1137-9. [CrossRef] [Google Scholar]
- Schrijver CJ, Siscoe GL. 2010. Heliophysics: Space storms and radiation: causes and effects. Cambridge University Press. [CrossRef] [Google Scholar]
- Schwenn R. 2006. Space weather: The solar perspective. Living Rev Sol Phys 3: 1–72. https://doi.org/10.12942/lrsp-2006-2. [CrossRef] [Google Scholar]
- Shea M, Smart D. 1998. Space weather: The effects on operations in space. Adv Space Res 22(1): 29–38. https://doi.org/10.1016/S0273-1177(97)01097-1. [CrossRef] [Google Scholar]
- Sreeja V. 2016. Impact and mitigation of space weather effects on GNSS receiver performance. Geosci Lett 3(1): 24. https://doi.org/10.1186/s40562-016-0057-0. [CrossRef] [Google Scholar]
- Taskesen E. 2023. Distfit is a python library for probability density fitting. https://doi.org/10.5281/zenodo.7650685. [Google Scholar]
- Temmer M. 2021. Space weather: The solar perspective. Living Rev Sol Phys 18(1): 4. https://doi.org/10.1007/s41116-021-00030-3. [CrossRef] [Google Scholar]
- Tsurutani BT, Gonzalez WD, Tang F, Akasofu SI, Smith EJ. 1988. Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979). J Geophys Res Space Phys 93(A8): 8519–8531. https://doi.org/10.1029/JA093iA08p08519. [CrossRef] [Google Scholar]
- VanderPlas J, Connolly AJ, Ivezić Ž, Gray A. 2012. Introduction to astroML: Machine learning for astrophysics. In 2012 conference on intelligent data understanding. IEEE, pp. 47–54. https://doi.org/10.1109/CIDU.2012.6382200. [CrossRef] [Google Scholar]
- Veettil SV, Cesaroni C, Aquino M, De Franceschi G, Berrili F, et al.. 2019. The ionosphere prediction service prototype for GNSS users. J Space Weather Space Clim 9: A41. https://doi.org/10.1051/swsc/2019038. [CrossRef] [EDP Sciences] [Google Scholar]
- Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, et al. 2020. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat Methods 17(3): 261–272. https://doi.org/10.1038/s41592-019-0686-2 [CrossRef] [PubMed] [Google Scholar]
- Vourlidas A, Patsourakos S, Savani NP. 2019. Predicting the geoeffective properties of coronal mass ejections: current status, open issues and path forward. Philos Trans Royal Soc A: Math Phys Eng Sci 377(2148): 20180096. https://doi.org/10.1098/rsta.2018.0096. [Google Scholar]
- Vršnak B. 2001. Dynamics of solar coronal eruptions. J Geophys Res Space Phys 106(A11): 25249–25259. [CrossRef] [Google Scholar]
- Vršnak B, Ruždjak D, Sudar D, Gopalswamy N. 2004. Kinematics of coronal mass ejections between 2 and 30 solar radii-What can be learned about forces governing the eruption? A&A 423(2): 717–728. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Vršnak B, Žic T, Vrbanec D, Temmer M, Rollett T, et al. 2013. Propagation of interplanetary coronal mass ejections: The drag-based model. Sol Phys 285(1–2): 295–315. [CrossRef] [Google Scholar]
- Wang P, Zhang Y, Feng L, Yuan H, Gan Y, Li S, Lu L, Ying B, Gan W, Li H. 2019. A new automatic tool for CME detection and tracking with machine-learning techniques. Astrophys J Suppl Ser 244(1): 9. https://doi.org/10.3847/1538-4365/ab340c. [CrossRef] [Google Scholar]
- Webb DF, Howard TA. 2012. Coronal mass ejections: Observations. Living Rev Sol Phys 9(1): 1–83. https://doi.org/10.12942/lrsp-2012-3. [CrossRef] [Google Scholar]
- Wu C-C, Fry C, Wu S, Dryer M, Liou K. 2007. Three-dimensional global simulation of interplanetary coronal mass ejection propagation from the Sun to the heliosphere: Solar event of 12 May 1997. J Geophys Res Space Phys 112(A9): A09104. https://doi.org/10.1029/2006JA012211. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.