Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
Topical Issue - Space Climate: Long-term effects of solar variability on the Earth’s environment
|
|
---|---|---|
Article Number | 21 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/swsc/2024015 | |
Published online | 21 August 2024 |
- Aitchison J, Brown JAC. 1957. The lognormal distribution: With special reference to its uses in economics. Cambridge University Press, Cambridge, UK. ISBN 978-0521040112. [Google Scholar]
- Allen J, Sauer H, Frank L, Reiff P. 1989. Effects of the March 1989 solar activity. Eos Trans Am Geophys Union 70(46), 1479, 1486–1488. https://dx.doi.org/10.1029/89EO00409. [CrossRef] [Google Scholar]
- Asikainen T, Maliniemi V, Mursula K. 2010. Modeling the contributions of ring, tail, and magne-topause currents to the corrected Dst index. J Geophys Res Space Phys 115(A12): A12203. https://dx.doi.org/10.1029/2010JA015774. [CrossRef] [Google Scholar]
- Baker DN, Balstad R, Bodeau JM, Cameron E, Fennell JE, et al. 2008. Severe space weather events – Understanding societal and economic impacts. The National Academy Press, Washington, DC. ISBN 978-0-309-14153-6. https://dx.doi.org/10.17226/12507. [Google Scholar]
- Beggan CD, Clarke E, Lawrence E, Eaton E, Williamson J, Matsumoto K, Hayakawa H. 2024. Digitized continuous magnetic recordings for the August/September 1859 storms From London, UK. Space Weather 22(3): e2023SW003, 807. https://doi.org/10.1029/2023SW003807. [CrossRef] [Google Scholar]
- Blake SP, Pulkkinen A, Schuck PW, Glocer A, Oliveira DM, Welling DT, Weigel RS, Quaresima G. 2021. Recreating the horizontal magnetic field at Colaba during the Carrington event with geospace simulations. Space Weather 19(5): e2020SW002, 585. https://dx.doi.org/10.1029/2020SW002585. [CrossRef] [Google Scholar]
- Boaghe OM, Balikhin MA, Billings SA, Alleyne H. 2001. Identification of nonlinear processes in the magnetospheric dynamics and forecasting of Dst index. J Geophys Res Space Phys 106(A12): 30047–30066. https://dx.doi.org/10.1029/2000JA900162. [CrossRef] [Google Scholar]
- Bohm G, Zech G. 2010. Introduction to statistics and data analysis for physicists. Verlag Deutsches Elektronen-Synchrotron, Hamburg, Germany. ISBN 978-3-935702-41-6. [Google Scholar]
- Boteler DH. 2006a. Comment on time conventions in the recordings of 1859. Adv Space Res 38(2): 301–303. https://dx.doi.org/10.1016/j.asr.2006.07.006. [CrossRef] [Google Scholar]
- Boteler DH. 2006b. The super storms of August/September 1859 and their effects on the telegraph system. Adv Space Res 38(2): 159–172. https://dx.doi.org/10.1016/j.asr.2006.01.013. [CrossRef] [Google Scholar]
- Boteler DH. 2019. A 21st century view of the March 1989 magnetic storm. Space Weather 17(10): 1427–1441. https://dx.doi.org/10.1029/2019SW002278. [CrossRef] [Google Scholar]
- Box GEP, Tiao GC. 1992. Bayesian inference in statistical analysis. John Wiley & Sons, New York, NY. ISBN 9781118033197. https://dx.doi.org/10.1002/9781118033197. [Google Scholar]
- Carrington RC. 1859. Description of a singular appearance seen in the Sun on September 1 1859. Month Notices Royal Astron Soc 20(1): 13–15. https://dx.doi.org/10.1093/mnras/20.1.13. [CrossRef] [Google Scholar]
- Chapman S, Bartels J. 1962. Geomagnetism, Volume 1. Oxford University Press, London, UK, 2 edn. [Google Scholar]
- Cid C, Saiz E, Guerrero A, Palacios J, Cerrato Y. 2015. A Carrington-like geomagnetic storm observed in the 21st century. J Space Weather Space Clim 5: A16. https://dx.doi.org/10.1051/swsc/2015017. [CrossRef] [EDP Sciences] [Google Scholar]
- Clauset A, Shalizi CR, Newman MEJ. 2009. Power-law distributions in empirical data. SIAM Rev 51(4): 661–703. https://dx.doi.org/10.1137/070710111. [CrossRef] [Google Scholar]
- Cliver EW. 2006. The 1859 space weather event: Then and now. Adv Space Res 38(2): 119–129. https://dx.doi.org/10.1016/j.asr.2005.07.077. [CrossRef] [Google Scholar]
- Cliver EW, Dietrich WF. 2013. The 1859 space weather event revisited: Limits of extreme activity. J Space Weather Space Clim 3: A31. https://dx.doi.org/10.1051/swsc/2013053. [Google Scholar]
- Cliver EW, Svalgaard L. 2005. The 1859 solar-terrestrial disturbance and the current limits on extreme space weather activity. Solar Phys 224: 407–422. https://dx.doi.org/10.1007/s11207-005-4980-z. [Google Scholar]
- Corral Á, González A. 2019. Power law size distributions in geoscience revisited. Earth Space Sci 6(5): 673–697. https://dx.doi.org/10.1029/2018EA000479. [CrossRef] [Google Scholar]
- Crow EL, Shimizu K, (Eds.). 1988. Lognormal distributions: theory and applications. Marcel Dekker, New York, NY. ISBN 9780824778033. [Google Scholar]
- Daglis IA, (Ed.). 2005. Effects of space weather on technology infrastructure. Springer, Dordrecht, The Netherlands. ISBN 978-1-4020-2754-3. https://dx.doi.org/10.1007/1-4020-2754-0. [CrossRef] [Google Scholar]
- Daglis IA. 2006. Ring current dynamics. Space Sci Rev 124(1–4): 183–202. https://dx.doi.org/10.1007/s11214-006-9104-z. [Google Scholar]
- Dessler AJ, Parker EN. 1959. Hydromagnetic theory of geomagnetic storms. J Geophys Res 64(12): 2239–2252. https://dx.doi.org/10.1029/JZ064i012p02239. [CrossRef] [Google Scholar]
- Eastwood JP, Biffis E, Hapgood MA, Green L, Bisi MM, Bentley RD, Wicks R, McKinnell L-A, Gibbs M, Burnett C. 2017. The economic impact of space weather: Where do we stand?. Risk Anal 37(2): 206–218. https://dx.doi.org/10.1111/risa.12765. [CrossRef] [Google Scholar]
- Ebihara Y, Watari S, Kumar S. 2021. Prediction of geomagnetically induced currents (GICs) flowing in Japanese power grid for Carrington-class magnetic storms. Earth Planets Space 73. https://dx.doi.org/10.1186/s40623-021-01493-2. [CrossRef] [Google Scholar]
- Efron B, Tibshirani RJ. 1994. An introduction to the bootstrap. Chapman and Hall/CRC, New York, NY. https://doi.org/10.1201/9780429246593. [CrossRef] [Google Scholar]
- Fergusson EFT. 1860. Magnetical and meteorological observations made at the government observatory, Bombay, 1859. Bombay Education Society’s Press, Byculla, India. [Google Scholar]
- Friedrich E, Rostoker G, Connors MG, McPherron RL. 1999. Influence of the substorm current wedge on the Dst index. J Geophys Res Space Phys 104(A3): 4567–4575. https://dx.doi.org/10.1029/1998JA900096. [CrossRef] [Google Scholar]
- Gannon JL, Love JJ. 2011. USGS 1-min Dst index. J Atmos Solar-Terrestrial Phys 73(2): 323–334. https://dx.doi.org/10.1016/j.jastp.2010.02.013. [CrossRef] [Google Scholar]
- Gawali PB, Doiphode MG, Nimje RN. 2015. Colaba-Alibag magnetic observatory and Nanabhoy Moos: The influence of one over the other. History Geo Space Sci 6(2): 107–131. https://dx.doi.org/10.5194/hgss-6-107-2015. [CrossRef] [Google Scholar]
- Gjerloev JW. 2009. A global ground-based magnetometer initiative. Eos Trans Am Geophys Union 90(27): 230–231. https://dx.doi.org/10.1029/2009EO270002. [CrossRef] [Google Scholar]
- Gonzalez WD, Echer E, Tsurutani BT, Clúa de González AL, Dal Lago A. 2011. Interplanetary origin of intense, superintensive and extreme geomagnetic storms. Space Sci Rev 158(1): 69–89. https://dx.doi.org/10.1007/s11214-010-9715-2. [CrossRef] [Google Scholar]
- Gonzalez WD, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani BT, Vasyliunas VM. 1994. What is a geomagnetic storm?. J Geophys Res 99(A4): 5771–5792. https://dx.doi.org/10.1029/93JA02867. [CrossRef] [Google Scholar]
- Green JL, Boardsen S, Odenwald S, Humble J, Pazamickas KA. 2006. Eyewitness reports of the great auroral storm of 1859. Adv Space Res 39(2): 145–154. https://dx.doi.org/10.1016/j.asr.2005.12.021. [CrossRef] [Google Scholar]
- Hapgood M. 2019. The great storm of May 1921: An exemplar of a dangerous space weather event. Space Weather 17(7): 950–975. https://dx.doi.org/10.1029/2019SW002195. [NASA ADS] [CrossRef] [Google Scholar]
- Hapgood MA. 2012. Prepare for the coming space weather storm. Nature 484: 311–313. https://dx.doi.org/10.1038/484311a. [CrossRef] [Google Scholar]
- Hayakawa H, Ebihara JRRY, Correia AP, Sôma M. 2020a. South American auroral reports during the Carrington storm. Earth Planets Space 72(1): 122. https://dx.doi.org/10.1186/s40623-020-01249-4. [CrossRef] [Google Scholar]
- Hayakawa H, Ebihara Y, Cliver EW, Hattori K, Toriumi S, et al. 2019. The extreme space weather event in September 1909. Month Notices Royal Astron Soc 484(3): 4083–4099. https://dx.doi.org/10.1093/mnras/sty3196. [CrossRef] [Google Scholar]
- Hayakawa H, Ebihara Y, Hand DP, Hayakawa S, Kumar S, Mukherjee S, Veenadhari B. 2018. Low-latitude aurorae during the extreme space weather events in 1859. Astrophys J 869(1): 57. https://dx.doi.org/10.3847/1538-4357/aae47c. [CrossRef] [Google Scholar]
- Hayakawa H, Ebihara Y, Pevtsov AA, Bhaskar A, Karachik N, Oliveira DM. 2020b. Intensity and time series of extreme solar-terrestrial storm in 1946 March. Month Notices Royal Astron Soc 497(4): 5507–5517. https://dx.doi.org/10.1093/mnras/staa1508. [CrossRef] [Google Scholar]
- Hayakawa H, Nevanlinna H, Blake SP, Ebihara Y, Bhaskar AT, Miyoshi Y. 2022a. Temporal variations of the three geomagnetic field components at Colaba Observatory around the Carrington storm in 1859. Astrophys J 928(1): 32. https://dx.doi.org/10.3847/1538-4357/ac2601. [CrossRef] [Google Scholar]
- Hayakawa H, Oliveira DM, Shea MA, Smart DF, Blake SP, Hattori K, Bhaskar AT, Curto JJ, Franco DR, Ebihara Y. 2022b. The extreme solar and geomagnetic storms on 1940 March 20–25. Month Notices Royal Astron Soc 517(2): 1709–1723. https://dx.doi.org/10.1093/mnras/stab3615. [CrossRef] [Google Scholar]
- Hayakawa H, Ribeiro P, Vaquero JM, Knipp MCGDJ, Mekhaldi F, et al. 2020c. The extreme space weather event in 1903 October/November: An outburst from the quiet Sun. Astrophys J Lett 897(1): L10. https://dx.doi.org/10.3847/2041-8213/ab6a18. [CrossRef] [Google Scholar]
- Hodgson R. 1859. On a curious appearance seen in the Sun. Month Notices Royal Astron Soc 20(1): 15–16. https://dx.doi.org/10.1093/mnras/20.1.15a. [CrossRef] [Google Scholar]
- Hudson HS. 2021. Carrington events. Annu. Rev Astron Astrophys 59(1): 445–477. https://dx.doi.org/10.1146/annurev-astro-112420-023324. [CrossRef] [Google Scholar]
- Ishii M, Shiota D, Tao C, Ebihara Y, Fujiwara H, et al. 2021. Space weather benchmarks on Japanese society. Earth Planets Space 73(1): 108. https://dx.doi.org/10.1186/s40623-021-01420-5. [CrossRef] [Google Scholar]
- Iyemori T, Takeda M, Nosé M, Odagi Y, Toh H. 2010. Mid-latitude geomagnetic indices ASY and SYM for 2009 (Provisional). Internal report of data analysis center for geomagnetism and space magnetism. Kyoto University, Japan. https://wdc.kugi.kyoto-u.ac.jp/aeasy/asy.pdf. [Google Scholar]
- Jeffreys H. 1961. Theory of probability. Clarendon Press, Oxford, UK. ISBN 9780198503682, 0198503687. [Google Scholar]
- Jones HS. 1955. Sunspots and geomagnetic-storm data derived from Greenwich observations, 1874–1954. Her Majesty’s Stationery Office, London, UK. [Google Scholar]
- Karinen A, Mursula K. 2005. A new reconstruction of the Dst index for 1932–2002. Ann Geophys 23(2): 475–485. https://dx.doi.org/10.5194/angeo-23-475-2005. [CrossRef] [Google Scholar]
- Koenig C, Liu H, Schoot RVD, Depaoli S, eds. 2022. Moving beyond non-informative prior distributions: achieving the full potential of Bayesian methods for psychological research. Frontiers Media SA. ISBN 9782889742141, 2889742148. [CrossRef] [Google Scholar]
- Kotzé P. 2018. Hermanus magnetic observatory: A historical perspective of geomagnetism in southern Africa. History Geo-Space Sci 9(2): 125–131. https://dx.doi.org/10.5194/hgss-9-125-2018. [CrossRef] [Google Scholar]
- Kron W. 2002. Keynote lecture: Flood risk = hazard × exposure × vulnerability. In: Flood Defence ‘2002, vol 1, Wu B, Wang ZY, Wang GQ, Huang GH, Fang HW, Huang JC, (Eds.) Science Press, New York, NY. pp. 82–97. ISBN 978-1880132548. [Google Scholar]
- Lakhina GS, Tsurutani BT. 2018. Super geomagnetic storms: Past, present and future. In: Extreme space weather: Origins, predictability, and consequences, chap. 7, Buzulukova N, (Ed.) Elsevier, Amsterdam, The Netherlands. pp. 157–185. ISBN 978-0-12-812700-1. https://doi.org/10.1016/C2016-0-03769-5. [Google Scholar]
- Lewontin RC. 1966. On the measurement of relative variability. Syst Zool 15(2): 141–142. https://dx.doi.org/10.2307/sysbio/15.2.141. [CrossRef] [Google Scholar]
- Loewe CA, Prölss GW. 1997. Classification and mean behavior of magnetic storms. J Geophys Res 102(A7): 14209–14213. https://dx.doi.org/10.1029/96JA04020. [CrossRef] [Google Scholar]
- Love JJ. 2009. Missing data and the accuracy of magnetic-observatory hour means. Ann Geophys 27(9): 3601–3610. https://www.ann-geophys.net/27/3601/2009/. [CrossRef] [Google Scholar]
- Love JJ. 2021. Extreme-event magnetic storm probabilities derived from rank statistics of historical Dst intensities for solar cycles 14–24. Space Weather 19(4): e2020SW002, 579. https://dx.doi.org/10.1029/2020SW002579. [CrossRef] [Google Scholar]
- Love JJ, Finn CA. 2011. The USGS Geomagnetism Program and its role in space weather monitoring. Space Weather 9(7): S07001. https://dx.doi.org/10.1029/2011SW000684. [Google Scholar]
- Love JJ, Gannon JL. 2009. Revised Dst and the epicycles of magnetic disturbance: 1958–2007. Ann Geophys 27(8): 3101–3131. https://doi.org/10.5194/angeo-27-3101-2009. [CrossRef] [Google Scholar]
- Love JJ, Hayakawa H, Cliver EW. 2019a. Intensity and impact of the New York Railroad superstorm of May 1921. Space Weather 17(8): 1281–1292. https://dx.doi.org/10.1029/2019SW002250. [CrossRef] [Google Scholar]
- Love JJ, Hayakawa H, Cliver EW. 2019b. On the intensity of the magnetic superstorm of September 1909. Space Weather 17(1): 37–45. https://dx.doi.org/10.1029/2018SW002079. [CrossRef] [Google Scholar]
- Love JJ, Lucas GM, Rigler EJ, Murphy BS, Kelbert A, Bedrosian PA. 2022. Mapping a magnetic superstorm: March 1989 geoelectric hazards and impacts on the United States power systems. Space Weather 20(5): e2021SW003, 030. https://dx.doi.org/10.1029/2021SW003030. [Google Scholar]
- Love JJ, Tsai VC, Gannon JL. 2010. Averaging and sampling for magnetic-observatory hourly data. Ann Geophys 28(11): 2079–2096. https://dx.doi.org/10.5194/angeo-28-2079-2010. [CrossRef] [Google Scholar]
- Matta CF, Massa L, Gubskaya AV, Knoll E. 2011. Can one take the logarithm or the sine of a dimensioned quantity or a unit? Dimensional analysis involving transcendental functions. J Chem Educ 88(1): 67–70. https://dx.doi.org/10.1021/ed1000476. [CrossRef] [Google Scholar]
- Minamoto Y. 2013. Availability and access to data from Kakioka Magnetic Observatory, Japan. Data Sci J 12: G30–G35. https://dx.doi.org/10.2481/dsj.G-040. [CrossRef] [Google Scholar]
- Moos NAF. 1910. Colaba magnetic data, 1846 to 1905. Part I: Magnetic data and instruments. Government Central Press, Bombay, India. [Google Scholar]
- Moriña D, Serra I, Puig P, Corral Á. 2019. Probability estimation of a Carrington-like geomagnetic storm. Sci Rep 9(1): 2393. https://dx.doi.org/10.1038/s41598-019-38918-8. [CrossRef] [Google Scholar]
- Mursula K, Holappa L, Karinen A. 2008. Correct normalization of the Dst index. Astrophys Space Sci Trans 4(2): 41–45. https://dx.doi.org/10.5194/astra-4-41-2008. [CrossRef] [Google Scholar]
- Mursula K, Holappa L, Karinen A. 2011. Uneven weighting of stations in the Dst index. J Atmos Solar-Terrestrial Phys 73(2): 316–322. https://doi.org/10.1016/j.jastp.2010.04.007. [CrossRef] [Google Scholar]
- O’Hagan A, Forster J. 2004. Kendall’s advanced theory of statistics. In: Bayesian Inference, 2nd edn, vol 2B, Arnold, London, UK. ISBN 978-0-470-68569-3. [Google Scholar]
- Ohtani S. 2022. New insights from the 2003 Halloween Storm into the Colaba 1600 nT magnetic depression during the 1859 Carrington storm. J Geophys Res Space Phys 127(9): e2022JA030, 596. https://dx.doi.org/10.1029/2022JA030596. [Google Scholar]
- Ohtani S, Nosé M, Rostoker G, Singer H, Lui ATY, Nakamura M. 2001. Storm-substorm relationship: Contribution of the tail current to Dst. J Geophys Res Space Phys 106(A10): 21199–21209. https://dx.doi.org/10.1029/2000JA000400. [CrossRef] [Google Scholar]
- Olea RA, Pawlowsky-Glahn V. 2009. Kolmogorov-Smirnov test for spatially correlated data. Stoch Environ Res Risk Assess 23(6): 749–757. https://dx.doi.org/10.1007/s00477-008-0255-1. [CrossRef] [Google Scholar]
- Oughton EJ, Hapgood M, Richardson GS, Beggan CD, Thomson AWP, et al. 2019. A risk assessment framework for the socio-economic impacts of electricity transmission infrastructure failure due to space weather. Risk Anal 39(5): 1022–1043. https://dx.doi.org/10.1111/risa.13229. [CrossRef] [Google Scholar]
- Piccinelli R, Krausmann E. 2014. Space weather and power grids – A vulnerability assessment. European Union, Luxembourg. ISBN 978-92-79-43971-1. https://dx.doi.org/10.2788/20848. [Google Scholar]
- Press WH, Teukolsky SA, Vetterling WT, Flannery BP. 1992. Numerical Recipes in Fortran 77, 2nd edn. Cambridge University Press, Cambridge, UK. ISBN 978-0521430647. [Google Scholar]
- Rigler EJ. 2017. Time-causal decomposition of geomagnetic time series into secular variation, solar quiet, and disturbance signals. U.S. Geological Survey Open-File Report, 2017–1037. https://dx.doi.org/10.3133/ofr20171037. [Google Scholar]
- Roe BP. 2001. Probability and statistics in experimental physics. Undergraduate texts in contemporary physics. Springer-Verlag, New York, NY. ISBN 978-1-4684-9296-5. https://dx.doi.org/10.1007/978-1-4684-9296-5. [Google Scholar]
- Saiz E, Cid C, Guerrero A. 2021. The relevance of local magnetic records when using extreme space weather events as benchmarks. J Space Weather Space Clim 11: 35. https://doi.org/10.1051/swsc/2021018. [CrossRef] [EDP Sciences] [Google Scholar]
- Sckopke N. 1966. A general relation between the energy of trapped particles and the disturbance field over the Earth. J Geophys Res 71(13): 3125–3130. https://dx.doi.org/10.1029/JZ071i013p03125. [CrossRef] [Google Scholar]
- Silverman SM. 2006. Comparison of the aurora of September 1/2 1859 with other great auroras. Adv Space Res 38(2): 136–144. https://dx.doi.org/10.1016/j.asr.2005.03.157. [CrossRef] [Google Scholar]
- Siscoe GL, Crooker NU, Clauer CR. 2006. Dst of the Carrington storm of 1859. Adv Space Res 38(2): 173–179. https://dx.doi.org/10.1016/j.asr.2005.02.102. [CrossRef] [Google Scholar]
- Smolka A. 2006. Natural disasters and the challenge of extreme events: Risk management from an insurance perspective. Philos Trans Royal Soc London Ser A 364: 2147–2165. https://dx.doi.org/10.1098/rsta.2006.1818. [Google Scholar]
- Steinskog DJ, Thøstheim DB, Kvamstø NG. 2007. A cautionary note on the use of the Kolmogorov-Smirnov test for normality. Month Weather Rev 135(3): 1151–1157. https://dx.doi.org/10.1175/MWR3326.1. [CrossRef] [Google Scholar]
- Sugiura M. 1964. Hourly values of equatorial Dst for the IGY. Ann Int Geophys Year 35: 9–45. [Google Scholar]
- Sugiura M, Kamei T. 1991. Equatorial Dst index 1957–1986. IAGA Bulletin, 40, International Service of Geomagnetic Indices Publication Office, Saint-Maur-des-Fossess, France. [Google Scholar]
- Tsubouchi K, Omura Y. 2007. Long-term occurrence probabilities of intense geomagnetic storm events. Space Weather 5(12). https://dx.doi.org/10.1029/2007SW000329. [CrossRef] [Google Scholar]
- Tsurutani BT, Gonzalez WD, Lakhina GS, Alex S. 2003. The extreme magnetic storm of 1–2 September 1859. J Geophys Res 108(A7). https://dx.doi.org/10.1029/2002JA009504. [CrossRef] [Google Scholar]
- Turner NE, Baker DN, Pulkkinen TI, McPherron RL. 2000. Evaluation of the tail current contribution to Dst. J Geophys Res 105(A3): 5431–5439. https://dx.doi.org/10.1029/1999JA000248. [CrossRef] [Google Scholar]
- Usoskin I, Miyake F, Baroni M, Brehm N, Dalla S, et al. 2023. Extreme solar events: Setting up a paradigm. Space Sci Rev 219(8): 73. https://dx.doi.org/10.1007/s11214-023-01018-1. [CrossRef] [Google Scholar]
- Vassiliadis D, Klimas AJ, Valdivia JA, Baker DN. 2000. The nonlinear dynamics of space weather. Adv Space Res 26(1): 197–207. https://doi.org/10.1016/S0273-1177(99)01050-9. [CrossRef] [Google Scholar]
- von Storch H. 1995. Misuses of statistical analysis in climate research. In: Analysis of climate variability: Applications and Statistical techniques. von Storch H, Navarra A, (Eds.) Springer-Verlag, New York, NY. pp. 11–25. ISBN 978-3-662-03169-8. [CrossRef] [Google Scholar]
- Wilks DS. 2006. Statistical methods in the atmospheric sciences. Elsevier, Amsterdam, The Netherlands ISBN 978-0-12-751966-1. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.