Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
|
|
---|---|---|
Article Number | 22 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/swsc/2024025 | |
Published online | 21 August 2024 |
- Allen J. 2010. The Galaxy 15 anomaly: another satellite in the wrong place at a critical time. Space Weather 8(6): S06008. https://doi.org/10.1029/2010SW000588. [Google Scholar]
- Alves Ribeiro J, Pinheiro FJG, Pais MA. 2021. First estimations of geomagnetically induced currents in the South of Portugal. Space Weather 19(1): e2020SW002, 546. https://doi.org/10.1029/2020SW002546. [CrossRef] [Google Scholar]
- Alves Ribeiro J, Pinheiro FJG, Pais MA, Santos R, Cardoso J, Baltazar-Soares P, Monteiro Santos FA. 2023. Toward more accurate GIC estimations in the Portuguese power network. Space Weather 21(6): e2022SW003, 397. https://doi.org/10.1029/2022SW003397. [CrossRef] [Google Scholar]
- Aryan H, Bortnik J, Li J, Weygand JM, Chu X, Angelopoulos V. 2022. Multiple conjugate observations of magnetospheric fast flow bursts using THEMIS observations. Ann Geophys 40(4): 531–544. https://doi.org/10.5194/angeo-40-531-2022. [CrossRef] [Google Scholar]
- Bergin A, Chapman SC, Watkins NW, Moloney NR, Gjerloev JW. 2023. Extreme event statistics in Dst, SYM-H, and SMR geomagnetic indices. Space Weather 21(3): e2022SW003, 304. https://doi.org/10.1029/2022SW003304. [CrossRef] [Google Scholar]
- Blake SP, Pulkkinen A, Schuck PW, Glocer A, Oliveira DM, Welling DT, Weigel RS, Quaresima G. 2021. Recreating the horizontal magnetic field at Colaba during the Carrington event with geospace simulations. Space Weather 19(5): e2020SW002, 585. https://doi.org/10.1029/2020SW002585. [CrossRef] [Google Scholar]
- Chapman SC, McIntosh SW, Leamon RJ, Watkins NW. 2020. Quantifying the solar cycle modulation of extreme space weather. Geophys Res Lett 47(11): e2020GL087, 795. https://doi.org/10.1029/2020GL087795. [CrossRef] [Google Scholar]
- Chu X, McPherron RL, Hsu T-S, Angelopoulos V. 2015. Solar cycle dependence of substorm occurrence and duration: implications for onset. J Geophys Res Space Phys 120(4): 2808–2818. https://doi.org/10.1002/2015JA021104. [CrossRef] [Google Scholar]
- Cliver EW, Dietrich WF. 2013. The 1859 space weather event revisited: limits of extreme activity. J Space Weather Space Clim 3: A31. https://doi.org/10.1051/swsc/2013053. [Google Scholar]
- Coles S. 2001. An introduction to statistical modeling of extreme values. Springer Series in Statistics, Springer, London. ISBN 9781447136750. https://doi.org/10.1007/978-1-4471-3675-0. [CrossRef] [Google Scholar]
- Dimmock AP, Rosenqvist L, Welling DT, Viljanen A, Honkonen I, Boynton RJ, Yordanova E. 2020. On the regional variability of dB/dt and its significance to GIC. Space Weather 18(8): e2020SW002, 497. https://doi.org/10.1029/2020SW002497. [CrossRef] [Google Scholar]
- Doherty P, Coster A, Murtagh W. 2004. Space weather effects of October–November 2003. GPS Sol 8(4): 267–271. https://doi.org/10.1007/s10291-004-0109-3. [CrossRef] [Google Scholar]
- Dong X-C, Dunlop MW, Xiao C, Wei D, Wang T-Y, Zhao J-S. 2023. Simultaneous mesoscale polar cusp field-aligned currents measured on mid- and low-altitude satellites. Geophys Res Lett 50(1): e2022GL102, 460. https://doi.org/10.1029/2022GL102460. [CrossRef] [Google Scholar]
- Eastwood JP, Biffis E, Hapgood MA, Green L, Bisi MM, Bentley RD, Wicks R, McKinnell L-A, Gibbs M, Burnett C. 2017. The economic impact of space weather: where do we stand? Risk Anal 37(2): 206–218. https://doi.org/10.1111/risa.12765. [CrossRef] [Google Scholar]
- Fang T-W, Kubaryk A, Goldstein D, Li Z, Fuller-Rowell T, Millward G, Singer HJ, Steenburgh R, Westerman S, Babcock E. 2022. Space weather environment during the SpaceX starlink satellite loss in February 2022. Space Weather 20(11): e2022SW003, 193. https://doi.org/10.1029/2022SW003193. [CrossRef] [Google Scholar]
- Fogg AR, Jackman CM, Malone-Leigh J, Gallagher PT, Smith AW, Lester M, Walach M-T, Waters JE. 2023. Extreme value analysis of ground magnetometer observations at Valentia observatory, Ireland. Space Weather 21(7): e2023SW003, 565. https://doi.org/10.1029/2023SW003565. [CrossRef] [Google Scholar]
- Gannon JL, Birchfield AB, Shetye KS, Overbye TJ. 2017. A comparison of peak electric fields and GICs in the Pacific Northwest using 1-D and 3-D conductivity. Space Weather 15(11): 1535–1547. https://doi.org/10.1002/2017SW001677. [CrossRef] [Google Scholar]
- Gaunt CT, Coetzee G. 2007. Transformer failures in regions incorrectly considered to have low GIC-risk. In: 2007 IEEE Lausanne Power Tech, pp. 807–812. https://doi.org/10.1109/PCT.2007.4538419. [CrossRef] [Google Scholar]
- Gonzalez WD, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani BT, Vasyliunas VM. 1994. What is a geomagnetic storm? J Geophys Res Space Phys 99(A4): 5771–5792. https://doi.org/10.1029/93JA02867. [CrossRef] [Google Scholar]
- Hapgood M. 2019. The great storm of May 1921: an exemplar of a dangerous space weather event. Space Weather 17(7): 950–975. https://doi.org/10.1029/2019SW002195. [NASA ADS] [CrossRef] [Google Scholar]
- Hutchinson JA, Wright DM, Milan SE. 2011. Geomagnetic storms over the last solar cycle: a superposed epoch analysis. J Geophys Res Space Phys 116(A9). https://doi.org/10.1029/2011JA016463. [Google Scholar]
- Kappenman JG. 2006. Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – an analysis of observational evidence including the great storm of May 1921. Adv Space Res 38(2): 188–199. The Great Historical Geomagnetic Storm of 1859: A Modern Look. https://doi.org/10.1016/j.asr.2005.08.055. [CrossRef] [Google Scholar]
- Kataoka R, Shiota D, Fujiwara H, Jin H, Tao C, Shinagawa H, Miyoshi Y. 2022. Unexpected space weather causing the reentry of 38 Starlink satellites in February 2022. J Space Weather Space Clim 12: 41. https://doi.org/10.1051/swsc/2022034. [CrossRef] [EDP Sciences] [Google Scholar]
- Koons HC. 2001. Statistical analysis of extreme values in space science. J Geophys Res Space Phys 106(A6): 10915–10921. https://doi.org/10.1029/2000JA000234. [CrossRef] [Google Scholar]
- Korja T, Engels M, Zhamaletdinov AA, Kovtun AA, Palshin NA, Smirnov MY, Tokarev AD, Asming VE, Vanyan LL, Vardaniants IL. 2002. Crustal conductivity in Fennoscandia—a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth Planets Space 54: 535–558. https://doi.org/10.1186/BF03353044. [Google Scholar]
- Lanabere V, Dimmock AP, Rosenqvist L, Juusola L, Viljanen A, Johlander A, Odelstad E. 2023. Analysis of the geoelectric field in Sweden over solar cycles 23 and 24: spatial and temporal variability during strong GIC events. Space Weather 21(12): e2023SW003, 588. https://doi.org/10.1029/2023SW003588. [CrossRef] [Google Scholar]
- Loto’aniu TM, Singer HJ, Rodriguez JV, Green J, Denig W, Biesecker D, Angelopoulos V. 2015. Space weather conditions during the Galaxy 15 spacecraft anomaly. Space Weather 13(8): 484–502. https://doi.org/10.1002/2015SW001239. [CrossRef] [Google Scholar]
- Love JJ. 2021. Extreme-event magnetic storm probabilities derived from rank statistics of historical Dst intensities for solar cycles 14–24. Space Weather 19(4): e2020SW002, 579. https://doi.org/10.1029/2020SW002579. [CrossRef] [Google Scholar]
- Love JJ, Lucas GM, Rigler EJ, Murphy BS, Kelbert A, Bedrosian PA. 2022. Mapping a magnetic superstorm: March 1989 geoelectric hazards and impacts on United States power systems. Space Weather 20(5): e2021SW003, 030. https://doi.org/10.1029/2021SW003030. [Google Scholar]
- Malone-Leigh J, Campanyà J, Gallagher PT, Hodgson J, Hogg C. 2024. Mapping geoelectric field hazards in Ireland. Space Weather 22(2): e2023SW003, 638. https://doi.org/10.1029/2023SW003638. [CrossRef] [Google Scholar]
- Marshalko E, Kruglyakov M, Kuvshinov A, Viljanen A. 2023. Three-dimensional modeling of the ground electric field in Fennoscandia during the Halloween geomagnetic storm. Space Weather 21(9): e2022SW003, 370. https://doi.org/10.1029/2022SW003370. [CrossRef] [Google Scholar]
- Meredith NP, Horne RB, Isles JD, Green JC. 2016. Extreme energetic electron fluxes in low Earth orbit: analysis of POES E > 30, E > 100, and E > 300 keV electrons. Space Weather 14(2): 136–150. https://doi.org/10.1002/2015SW001348. [CrossRef] [Google Scholar]
- Meredith NP, Horne RB, Isles JD, Rodriguez JV. 2015. Extreme relativistic electron fluxes at geosynchronous orbit: analysis of GOES E > 2 MeV electrons. Space Weather 13(3): 170–184. https://doi.org/10.1002/2014SW001143. [CrossRef] [Google Scholar]
- Meredith NP, Horne RB, Sandberg I, Papadimitriou C, Evans HDR. 2017. Extreme relativistic electron fluxes in the Earth’s outer radiation belt: analysis of INTEGRAL IREM data. Space Weather 15(7): 917–933. https://doi.org/10.1002/2017SW001651. [CrossRef] [Google Scholar]
- Mishra W, Doshi U, Srivastava N. 2021. Radial sizes and expansion behavior of ICMEs in solar cycles 23 and 24. Front Astron Space Sci 8: 142. https://doi.org/10.3389/fspas.2021.713999. [CrossRef] [Google Scholar]
- Myllys M, Viljanen A, Rui OA, Ohnstad TM. 2014. Geomagnetically induced currents in Norway: the northernmost high-voltage power grid in the world. J Space Weather Space Clim 4: A10. https://doi.org/10.1051/swsc/2014007. [CrossRef] [EDP Sciences] [Google Scholar]
- Partamies N, Juusola L, Tanskanen E, Kauristie K. 2013. Statistical properties of substorms during different storm and solar cycle phases. Ann Geophys 31(2): 349–358. https://doi.org/10.5194/angeo-31-349-2013. [CrossRef] [Google Scholar]
- Patterson CJ, Wild JA, Boteler DH. 2023. Modeling the impact of geomagnetically induced currents on electrified railway signaling systems in the United Kingdom. Space Weather 21(3): e2022SW003, 385. https://doi.org/10.1029/2022SW003385. [CrossRef] [Google Scholar]
- Pulkkinen A, Bernabeu E, Thomson A, Viljanen A, Pirjola R, et al. 2017. Geomagnetically induced currents: science, engineering, and applications readiness. Space Weather 15(7): 828–856. https://doi.org/10.1002/2016SW001501. [NASA ADS] [CrossRef] [Google Scholar]
- Pulkkinen A, Lindahl S, Viljanen A, Pirjola R. 2005. Geomagnetic storm of 29–31 October 2003: geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system. Space Weather 3(8). https://doi.org/10.1029/2004SW000123. [CrossRef] [Google Scholar]
- Pulkkinen A, Viljanen A, Pirjola R. 2006. Estimation of geomagnetically induced current levels from different input data. Space Weather 4(8). https://doi.org/10.1029/2006SW000229. [CrossRef] [Google Scholar]
- Rogers NC, Wild JA, Eastoe EF, Gjerloev JW, Thomson AWP. 2020. A global climatological model of extreme geomagnetic field fluctuations. J Space Weather Space Clim 10: 5. https://doi.org/10.1051/swsc/2020008. [CrossRef] [EDP Sciences] [Google Scholar]
- Rosenqvist L, Fristedt T, Dimmock AP, Davidsson P, Fridström R, et al. 2022. 3D modeling of geomagnetically induced currents in Sweden—validation and extreme event analysis. Space Weather 20(3): e2021SW002, 988. https://doi.org/10.1029/2021SW002988. [CrossRef] [Google Scholar]
- Rosenqvist L, Hall JO. 2019. Regional 3-D modeling and verification of geomagnetically induced currents in Sweden. Space Weather 17(1): 27–36. https://doi.org/10.1029/2018SW002084. [CrossRef] [Google Scholar]
- Schillings A, Palin L, Opgenoorth HJ, Hamrin M, Rosenqvist L, Gjerloev JW, Juusola L, Barnes R. 2022. Distribution and occurrence frequency of dB/dt spikes during magnetic storms 1980–2020. Space Weather 20(5): e2021SW002, 953. https://doi.org/10.1029/2021SW002953. [CrossRef] [Google Scholar]
- Thomson AWP, Dawson EB, Reay SJ. 2011. Quantifying extreme behavior in geomagnetic activity. Space Weather 9(10). https://doi.org/10.1029/2011SW000696. [Google Scholar]
- Trivedi NB, Vitorello I, Kabata W, Dutra SLG, Padilha AL, et al. 2007. Geomagnetically induced currents in an electric power transmission system at low latitudes in Brazil: a case study. Space Weather 5(4). https://doi.org/10.1029/2006SW000282. [CrossRef] [Google Scholar]
- Tsubouchi K, Omura Y. 2007. Long-term occurrence probabilities of intense geomagnetic storm events. Space Weather 5(12). https://doi.org/10.1029/2007SW000329. [CrossRef] [Google Scholar]
- Vanhamäki H, Juusola L. 2020. Introduction to spherical elementary current systems, 5–33. Springer International Publishing, Cham. ISBN 978-3-030-26732-2. https://doi.org/10.1007/978-3-030-26732-2_2. [Google Scholar]
- Veenadhari B, Selvakumaran R, Singh R, Maurya AK, Gopalswamy N, Kumar S, Kikuchi T. 2012. Coronal mass ejection–driven shocks and the associated sudden commencements/sudden impulses. J Geophys Res Space Phys 117(A4). https://doi.org/10.1029/2011JA017216. [CrossRef] [Google Scholar]
- Viljanen A, Pulkkinen A, Amm O, Pirjola R, Korja T, BEAR Working Group. 2004. Fast computation of the geoelectric field using the method of elementary current systems and planar Earth models. Ann Geophys 22(1): 101–113. https://doi.org/10.5194/angeo-22-101-2004. [CrossRef] [Google Scholar]
- Watari S, Kunitake M, Kitamura K, Hori T, Kikuchi T, et al. 2009. Measurements of geomagnetically induced current in a power grid in Hokkaido, Japan. Space Weather 7(3). https://doi.org/10.1029/2008SW000417. [Google Scholar]
- Webb DF, Allen JH. 2004. Spacecraft and ground anomalies related to the October–November 2003 solar activity. Space Weather 2(3). https://doi.org/10.1029/2004SW000075. [Google Scholar]
- Wei D, Dunlop MW, Yang J, Dong X, Yu Y, Wang T. 2021. Intense dB/dt variations driven by near-Earth Bursty Bulk Flows (BBFs): a case study. Geophys Res Lett 48(4): e2020GL091, 781. https://doi.org/10.1029/2020GL091781. [CrossRef] [Google Scholar]
- Welling DT, Love JJ, Rigler EJ, Oliveira DM, Komar CM, Morley SK. 2021. Numerical simulations of the geospace response to the arrival of an idealized perfect interplanetary coronal mass ejection. Space Weather 19(2): e2020SW002, 489. https://doi.org/10.1029/2020SW002489. [CrossRef] [Google Scholar]
- Wik M, Pirjola R, Lundstedt H, Viljanen A, Wintoft P, Pulkkinen A. 2009. Space weather events in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems. Ann Geophys 27(4): 1775–1787. https://doi.org/10.5194/angeo-27-1775-2009. [CrossRef] [Google Scholar]
- Wik M, Viljanen A, Pirjola R, Pulkkinen A, Wintoft P, Lundstedt H. 2008. Calculation of geomagnetically induced currents in the 400 kV power grid in southern Sweden. Space Weather 6(7): 07005. https://doi.org/10.1029/2007SW000343. [Google Scholar]
- Wintoft P, Viljanen A, Wik M. 2016. Extreme value analysis of the time derivative of the horizontal magnetic field and computed electric field. Ann Geophys 34(4): 485–491. https://doi.org/10.5194/angeo-34-485-2016. [CrossRef] [Google Scholar]
- Xue D, Yang J, Liu Z, Yu S. 2023. Examining the economic costs of the 2003 Halloween storm effects on the North Hemisphere aviation using flight data in 2019. Space Weather 21(3): e2022SW003, 381. https://doi.org/10.1029/2022SW003381. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.