Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
|
|
---|---|---|
Article Number | 14 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/swsc/2024010 | |
Published online | 28 May 2024 |
- Arge CN, Pizzo VJ. 2000. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J Geophys Res 105(A5): 10465–10479. https://doi.org/10.1029/1999JA000262. [CrossRef] [Google Scholar]
- Biondo R, Bemporad A, Mignone A, Reale F. 2021. Reconstruction of the Parker spiral with the reverse in situ data and MHD approach – RIMAP. J Space Weather Space Clim 11: 7. https://doi.org/10.1051/swsc/2020072. [CrossRef] [EDP Sciences] [Google Scholar]
- Dalya Z, Opitz A, Biro N. 2023. Duration of ICME signatures in in-situ data from several space probes for the time interval of 2004–2021. Mendeley Data, V1. https://doi.org/10.17632/4zwbp8k7cr.1. [Google Scholar]
- Dósa M, Opitz A, Dálya Z, Szegö K. 2018. Magnetic lasso: a new kinematic solar wind propagation method. Sol Phys 293(9): 127. https://doi.org/10.1007/s11207-018-1340-3. [CrossRef] [Google Scholar]
- Facskó G, Honkonen I, Živković T, Palin L, Kallio E, Ågren K, Opgenoorth H, Tanskanen EI, Milan S. 2016. One year in the Earth’s magnetosphere: A global MHD simulation and spacecraft measurements. Space Weather 14(5): 351–367. https://doi.org/10.1002/2015SW001355. [CrossRef] [Google Scholar]
- Facskó G, Kecskeméty K, Erdös G, Tátrallyay M, Daly PW, Dandouras I. 2008. A statistical study of hot flow anomalies using cluster data. Adv Space Res 41(8): 1286–1291. https://doi.org/10.1016/j.asr.2008.02.005. [CrossRef] [Google Scholar]
- Facskó G, Németh Z, Erdös G, Kis A, Dandouras I. 2009. A global study of hot flow anomalies using Cluster multi-spacecraft measurements. Ann Geophys 27(5): 2057–2076. https://doi.org/10.5194/angeo-27-2057-2009. [CrossRef] [Google Scholar]
- Facskó G, Trotignon JG, Dandouras I, Lucek EA, Daly PW. 2010. Study of hot flow anomalies using cluster multi-spacecraft measurements. Adv Space Res 45(4): 541–552. https://doi.org/10.1016/j.asr.2009.08.011. [CrossRef] [Google Scholar]
- Freedman D, Pisani R, Purves R. 2014. Statistics, 4th edn, W. W. Norton & Company. [Google Scholar]
- Gopalswamy N, Akiyama S, Yashiro S, Michalek G, Lepping RP. 2008. Solar sources and geospace consequences of interplanetary magnetic clouds observed during solar cycle 23. J Atmos Sol-Terr Phys 70(2): 245–253. https://doi.org/10.1016/j.jastp.2007.08.070. [CrossRef] [Google Scholar]
- Gosling JT, Pizzo VJ. 1999. Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci Rev 89: 21–52. https://doi.org/10.1023/A:1005291711900. [CrossRef] [Google Scholar]
- Grandin M, Aikio AT, Kozlovsky A. 2019. Properties and geoeffectiveness of solar wind high-speed streams and stream interaction regions during solar cycles 23 and 24. J Geophys Res 124(6): 3871–3892. https://doi.org/10.1029/2018JA026396. [CrossRef] [Google Scholar]
- Harvey JW, Hill F, Kennedy JR, Leibacher JW, Livingston WC. 1988. The global oscillation network group (GONG). Adv Space Res 8(11): 117–120. https://doi.org/10.1016/0273-1177(88)90304-3. [CrossRef] [Google Scholar]
- Hundhausen AJ. 1972. Coronal expansion and solar wind, volume 5 of Physics and Chemistry in Space. Springer. https://doi.org/10.1007/978-3-642-65414-5. [Google Scholar]
- Kabin K, Gombosi TI, DeZeeuw DL, Powell KG. 2000. Interaction of mercury with the solar wind. Icarus 143(2): 397–406. https://doi.org/10.1006/icar.1999.6252. [NASA ADS] [CrossRef] [Google Scholar]
- Kaiser ML, Kucera TA, Davila JM, St. Cyr OC, Guhathakurta M, Christian E. 2008. The STEREO mission: an introduction. Space Sci Rev 136(1): 5–16. https://doi.org/10.1007/s11214-007-9277-0. [CrossRef] [Google Scholar]
- Kecskeméty K, Erdos G, Facskö G, Tátrallyay M, Dandouras I, Daly P, Kudela K. 2006. Distributions of suprathermal ions near hot flow anomalies observed by RAPID aboard Cluster. Adv Space Res 38(8): 1587–1594. https://doi.org/10.1016/j.asr.2005.09.027. [CrossRef] [Google Scholar]
- Keebler TB, Tóth G, Zieger B, Opher M. 2022. MSWIM2D: two-dimensional outer heliosphere solar wind modeling. The Astrophysical Journal Supplement Series 260(2): 43. https://doi.org/10.3847/1538-4365/ac67eb. [CrossRef] [Google Scholar]
- Keller CU, Harvey JW, Solis Team. 2003. The SOLIS vector-spectromagnetograph. ASP Conf Proc 307: 13. [Google Scholar]
- Koban G, Opitz A, Biro N, Nemeth Z. 2023. Orientation of the stream interface in CIRs. J Space Weather Space Clim 13: 14. https://doi.org/10.1051/swsc/2023011. [CrossRef] [EDP Sciences] [Google Scholar]
- Kovács P, Facskó G, Dandouras I. 2014. Turbulent dynamics inside the cavity of hot flow anomaly. Planet Space Sci 92: 24–33. https://doi.org/10.1016/j.pss.2014.01.001. [CrossRef] [Google Scholar]
- Krieger AS, Timothy AF, Roelof EC. 1973. A coronal hole and its identification as the source of a high velocity solar wind stream. Sol Phys 29: 505–525. https://doi.org/10.1007/BF00150828. [CrossRef] [Google Scholar]
- Lee CO, Luhmann JG, Odstrcil D, MacNeice PJ, de Pater I, Riley P, Arge CN. 2009. The solar wind at 1 AU during the declining phase of solar cycle 23: comparison of 3D numerical model results with observations. Sol Phys 254(1): 155–183. https://doi.org/10.1007/s11207-008-9280-y. [CrossRef] [Google Scholar]
- Levine RH, Altschuler MD, Harvey JW. 1977. Solar sources of the interplanetary magnetic field and solar wind. J Geophys Res 82(7): 1061–1065. https://doi.org/10.1029/JA082i007p01061. [CrossRef] [Google Scholar]
- Linker JA, Mikic Z, Biesecker DA, Forsyth RJ, Gibson SE, Lazarus AJ, Lecinski A, Riley P, Szabo A, Thompson BJ. 1999. Magnetohydrodynamic modeling of the solar corona during whole sun month. J Geophys Res 104(A5): 9809–9830. https://doi.org/10.1029/1998JA900159. [CrossRef] [Google Scholar]
- Maharana A, Isavnin A, Scolini C, Wijsen N, Rodriguez L, Mierla M, Magdalenić J, Poedts S. 2022. Implementation and validation of the FRi3D flux rope model in EUHFORIA. Adv Space Res 70(6): 1641–1662. https://doi.org/10.1016/j.asr.2022.05.056. [CrossRef] [Google Scholar]
- Mancuso S, Giordano S, Barghini D, Telloni D. 2020. Differential rotation of the solar corona: a new data-adaptive multiwavelength approach. A&A 644: A18. https://doi.org/10.1051/0004-6361/202039094. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- McComas DJ, Bame SJ, Barker P, Feldman WC, Phillips JL, Riley P, Griffee JW. 1998. Solar wind electron proton alpha monitor (SWEPAM) for the advanced composition explorer. Space Sci Rev 86(1): 563–612. https://doi.org/10.1023/A:1005040232597. [CrossRef] [Google Scholar]
- Meng X, van der Holst B, Tóth G, Gombosi TI. 2015. Alfvén wave solar model (AWSoM): proton temperature anisotropy and solar wind acceleration. Mon Not R Astron Soc 454(4): 3697–3709. https://doi.org/10.1093/mnras/stv2249. [CrossRef] [Google Scholar]
- Müller D, Cyr OCS, Zouganelis I, Gilbert HR, Marsden R, et al. 2020. The solar orbiter mission – science overview. A&A 642: A1. https://doi.org/10.1051/0004-6361/202038467. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Odstrcil D. 2003. Modeling 3-D solar wind structure. Adv Space Res 32(4): 497–506. https://doi.org/10.1016/S0273-1177(03)00332-6. [CrossRef] [Google Scholar]
- Ogilvie KW, Desch MD. 1997. The WIND spacecraft and its early scientific results. Adv Space Res 20(4): 559–568. https://doi.org/10.1016/S0273-1177(97)00439-0. [CrossRef] [Google Scholar]
- Opitz A, Karrer R, Wurz P, Galvin AB, Bochsler P, et al. 2009. Temporal evolution of the solar wind bulk velocity at solar minimum by correlating the STEREO A and B PLASTIC measurements. Sol Phys 256(1): 365–377. https://doi.org/10.1007/s11207-008-9304-7. [CrossRef] [Google Scholar]
- Owens M, Lang M, Barnard L, Riley P, Ben-Nun M, Scott CJ, Lockwood M, Reiss MA, Arge CN, Gonzi S. 2020. A computationally efficient, time-dependent model of the solar wind for use as a surrogate to three-dimensional numerical magnetohydrodynamic simulations. Sol Phys 295(3): 43. https://doi.org/10.1007/s11207-020-01605-3. [CrossRef] [Google Scholar]
- Owens MJ, Riley P. 2017. Probabilistic solar wind forecasting using large ensembles of near-sun conditions with a simple one-dimensional “upwind” scheme. Space Weather 15(11): 1461–1474. https://doi.org/10.1002/2017SW001679. [NASA ADS] [CrossRef] [Google Scholar]
- Owens MJ, Riley P, Lang M, Lockwood M. 2019. Near-earth solar wind forecasting using corotation from L5: the error introduced by heliographic latitude offset. Space Weather 17(7): 1105–1113. https://doi.org/10.1029/2019SW002204. [CrossRef] [Google Scholar]
- Pizzo V, Millward G, Parsons A, Biesecker D, Hill S, Odstrcil D. 2011. Wang-Sheeley-Arge-Enlil cone model transitions to operations. Space Weather 9: 03004. https://doi.org/10.1029/2011SW000663. [Google Scholar]
- Pomoell J, Poedts S. 2018. EUHFORIA: European heliospheric forecasting information asset. J Space Weather Space Clim 8: A35. https://doi.org/10.1051/swsc/2018020. [Google Scholar]
- Pulkkinen T. 2007. Space weather: terrestrial perspective. Living Rev Sol Phys 4: 1. https://doi.org/10.12942/lrsp-2007-1. [CrossRef] [Google Scholar]
- Riley P, Lionello R. 2011. Mapping solar wind streams from the Sun to 1 AU: a comparison of techniques. Sol Phys 270(2): 575–592. https://doi.org/10.1007/s11207-011-9766-x. [CrossRef] [Google Scholar]
- Schatten KH, Wilcox JM, Ness NF. 1969. A model of interplanetary and coronal magnetic fields. Sol Phys 6(3): 442–455. https://doi.org/10.1007/BF00146478. [CrossRef] [Google Scholar]
- Scherrer PH, Bogart RS, Bush RI, Hoeksema JT, Kosovichev AG, et al. 1995. The solar oscillations investigation – Michelson doppler imager. Sol Phys 162(1): 129–188. https://doi.org/10.1007/BF00733429. [CrossRef] [Google Scholar]
- Scherrer PH, Schou J, Bush RI, Kosovichev AG, Bogart RS, et al. 2012. The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Sol Phys 275(1): 207–227. https://doi.org/10.1007/s11207-011-9834-2. [CrossRef] [Google Scholar]
- Scherrer PH, Wilcox JM, Svalgaard L, Duvall TL, Dittmer PH, Gustafson EK. 1977. The mean magnetic field of the Sun: observations at Stanford. Sol Phys 54(2): 353–361. https://doi.org/10.1007/BF00159925. [CrossRef] [Google Scholar]
- Sheeley NR, Harvey JW, Feldman WC. 1976. Coronal holes, solar wind streams, and recurrent geomagnetic disturbances: 1973–1976. Sol Phys 49(2): 271–278. https://doi.org/10.1007/BF00162451. [CrossRef] [Google Scholar]
- Snyder CW, Neugebauer M, Rao UR. 1963. The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activity. J Geophys Res 68(24): 6361–6370. https://doi.org/10.1029/JZ068i024p06361. [CrossRef] [Google Scholar]
- Sokolov IV, van der Holst B, Oran R, Downs C, Roussev II, Jin M, Manchester WB, Evans RM, Gombosi TI. 2013. Magnetohydrodynamic waves and coronal heating: unifying empirical and MHD turbulence models. Astrophys J 764(1): 23. https://doi.org/10.1088/0004-637X/764/1/23. [CrossRef] [Google Scholar]
- Solanki SK, del Toro Iniesta J, Woch J, Gandorfer A, Hirzberger J, et al. 2020. The polarimetric and helioseismic imager on solar orbiter. A&A 642: A11. https://doi.org/10.1051/0004-6361/201935325. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Stone EC, Frandsen AM, Mewaldt RA, Christian ER, Margolies D, Ormes JF, Snow F. 1998. The advanced composition explorer. Space Sci Rev 86(1): 1–22. https://doi.org/10.1023/A:1005082526237. [CrossRef] [Google Scholar]
- Tao C, Kataoka R, Fukunishi H, Takahashi Y, Yokoyama T. 2005. Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements. J Geophys Res 110(A11): A11208. https://doi.org/10.1029/2004JA010959. [Google Scholar]
- Timar A, Nemeth Z, Szego K, Dosa M, Opitz A, Madanian H, Goetz C, Richter I. 2017. Modelling the size of the very dynamic diamagnetic cavity of comet 67P/Churyumov-Gerasimenko. Mon Not R Astron Soc 469(Suppl_2): S723–S730. https://doi.org/10.1093/mnras/stx2628. [CrossRef] [Google Scholar]
- Timar A, Nemeth Z, Szego K, Dósa M, Opitz A, Madanian H. 2019. Estimating the solar wind pressure at comet 67P from Rosetta magnetic field measurements. J Space Weather Space Clim 9: A3. https://doi.org/10.1051/swsc/2018050. [CrossRef] [EDP Sciences] [Google Scholar]
- Tsurutani BT, Lakhina GS, Hajra R. 2020. The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are. Nonlinear Processes Geophys 27(1): 75–119. https://doi.org/10.5194/npg-27-75-2020. [Google Scholar]
- Tóth G, van der Holst B, Sokolov IV, De Zeeuw DL, Gombosi TI, et al. 2012. Adaptive numerical algorithms in space weather modeling. J Comput Phys 231(3): 870–903. https://doi.org/10.1016/j.jcp.2011.02.006. [CrossRef] [Google Scholar]
- Turner H, Owens MJ, Lang MS, Gonzi S. 2021. The influence of spacecraft latitudinal offset on the accuracy of corotation forecasts. Space Weather 19(8): e2021SW002802. https://doi.org/10.1029/2021SW002802. [CrossRef] [Google Scholar]
- van der Holst B, Sokolov IV, Meng X, Jin M, Manchester WB IV, Tóth G, Gombosi TI. 2014. Alfvén wave solar model (AWSoM): coronal heating. Astrophy J 782(2): 81. https://doi.org/10.1088/0004-637X/782/2/81. [CrossRef] [Google Scholar]
- Vech D, Szego K, Opitz A, Kajdic P, Fraenz M, Kallio E, Alho M. 2015. Space weather effects on the bow shock, the magnetic barrier, and the ion composition boundary at Venus. J Geophys Res 120(6): 4613–4627. https://doi.org/10.1002/2014JA020782. [CrossRef] [Google Scholar]
- Verbeke C, Pomoell J, Poedts S. 2019. The evolution of coronal mass ejections in the inner heliosphere: Implementing the spheromak model with EUHFORIA. A&A 627: A111. https://doi.org/10.1051/0004-6361/201834702. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Vörös Z, Facskó G, Khodachenko M, Honkonen I, Janhunen P, Palmroth M. 2014. Windsock memory COnditioned RAM (CO-RAM) pressure effect: forced reconnection in the Earth’s magnetotail. J Geophys Res 119(8): 6273–6293. https://doi.org/10.1002/2014ja019857. [CrossRef] [Google Scholar]
- Wang Y-M, Sheeley NR Jr. 1990. Solar wind speed and coronal flux-tube expansion. Astrophys J 355: 726. https://doi.org/10.1086/168805. [CrossRef] [Google Scholar]
- Wenzel KP, Marsden RG, Page DE, Smith EJ. 1992. The ULYSSES Mission. Astron Astrophys Suppl Ser 92: 207–219. [Google Scholar]
- Zhang H, Zong Q, Connor H, Delamere P, Facskó G, Le G, et al. 2022. Dayside transient phenomena and their impact on the magnetosphere and ionosphere. Space Sci Rev 218(5): 40. https://doi.org/10.1007/s11214-021-00865-0. [CrossRef] [Google Scholar]
- Zieger B, Hansen KC. 2008. Statistical validation of a solar wind propagation model from 1 to 10 AU. J Geophys Res 113(A8): A08107. https://doi.org/10.1029/2008ja013046. [Google Scholar]
- Zieger B, Hansen KC, Cohen O, Gombosi TI, Zurbuchen TH, Anderson BJ, Korth H. 2009. Upstream conditions at Mercury during the first MESSENGER flyby: results from two independent solar wind models. Geophys Res Lett 36(10): L10108. https://doi.org/10.1029/2009GL038346. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.