Issue |
J. Space Weather Space Clim.
Volume 14, 2024
Topical Issue - CMEs, ICMEs, SEPs: Observational, Modelling, and Forecasting Advances
|
|
---|---|---|
Article Number | 15 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/swsc/2024012 | |
Published online | 28 May 2024 |
- Afanasiev A, Battarbee M, Vainio R. 2015. Self-consistent Monte Carlo simulations of proton acceleration in coronal shocks: Effect of anisotropic pitch-angle scattering of particles. A&A 584: A81. https://doi.org/10.1051/0004-6361/201526750. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Afanasiev A, Vainio R, Trotta D, Nyberg S, Talebpour Sheshvan N, Hietala H, Dresing N. 2023. Self-consistent modeling of the energetic storm particle event of November 10, 2012. A&A 679: A111. https://doi.org/10.1051/0004-6361/202346220. [CrossRef] [EDP Sciences] [Google Scholar]
- Axford WI, Leer E, Skadron G. 1977. The acceleration of cosmic rays by shock waves. In: Proc. of 15th International Cosmic Ray Conference, vol. 11, Plovdiv, Bulgaria, August 13–26, 1977. Bulgarian Academy of Sciences, pp. 132–137. [Google Scholar]
- Bell AR. 1978. The acceleration of cosmic rays in shock fronts – I. Mon Not R Astron Soc 182: 147–156. https://doi.org/10.1093/mnras/182.2.147. [CrossRef] [Google Scholar]
- Berezhko EG, Taneev SN. 2016. Particle acceleration and Alfvén wave generation by an interplanetary shock. Astron Lett 42(2): 126–135. https://doi.org/10.1134/S1063773716010011. [CrossRef] [Google Scholar]
- Bieber JW, Matthaeus WH, Smith CW, Wanner W, Kallenrode M-B, Wibberenz G. 1994. Proton and electron mean free paths: The palmer consensus revisited. A&A 420: 294. https://doi.org/10.1086/173559. [Google Scholar]
- Blandford RD, Ostriker JP. 1978. Particle acceleration by astrophysical shocks. Astrophys J 221: L29–L32. https://doi.org/10.1086/182658. [CrossRef] [Google Scholar]
- Decker RB. 1988. Computer modeling of test particle acceleration at oblique shocks. Space Sci Rev 48(3–4): 195–262. https://doi.org/10.1007/BF00226009. [CrossRef] [Google Scholar]
- Desai M, Giacalone J. 2016. Large gradual solar energetic particle events. Living Rev Sol Phys 13(1): 3. https://doi.org/10.1007/s41116-016-0002-5. [CrossRef] [Google Scholar]
- Ding Z, Li G, Mason G, Poedts S, Kouloumvakos A, Ho G, Wijsen N, Wimmer-Schweingruber RF, Rodríguez-Pacheco J.. 2024. Modelling two energetic storm particle events observed by Solar Orbiter using the combined EUHFORIA and iPATH models. A&A 681: A92. https://doi.org/10.1051/0004-6361/202347506. [CrossRef] [EDP Sciences] [Google Scholar]
- Ding Z, Wijsen N, Li G, Poedts S. 2022. Modeling the 2020 November 29 solar energetic particle event using EUHFORIA and iPATH models. A&A 668: A71. https://doi.org/10.1051/0004-6361/202244732. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Drury LO. 1983. Review article: An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep Prog Phys 46(8): 973–1027. https://doi.org/10.1088/0034-4885/46/8/002. [CrossRef] [Google Scholar]
- Fraschetti F. 2021. Effect of acceleration and escape of energetic particles on spectral steepening at shocks. Astrophys J 909(1): 42. https://doi.org/10.3847/1538-4357/abd699. [CrossRef] [Google Scholar]
- Gordon BE, Lee MA, Möbius E, Trattner KJ. 1999. Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks and Earth’s bow shock revisited. J Geophys Res Space Phys 104(A12): 28263–28278. https://doi.org/10.1029/1999JA900356. [CrossRef] [Google Scholar]
- Hu J, Li G, Ao X, Zank GP, Verkhoglyadova O. 2017. Modeling particle acceleration and transport at a 2-D CME-driven shock. J Geophys Res (Space Phys) 122(11): 10938–10963. https://doi.org/10.1002/2017JA024077. [Google Scholar]
- Kocharov LG, Torsti J, Vainio R, Kovaltsov GA. 1996. Propagation of solar cosmic rays: Diffusion versus focused diffusion. Sol Phys 165(1): 205–208. https://doi.org/10.1007/BF00149100. [CrossRef] [Google Scholar]
- Krymskii GF. 1977. A regular mechanism for the acceleration of charged particles on the front of a shock wave. Akad Nauk SSSR Dokl 234: 1306–1308. [Google Scholar]
- Lee MA. 1983. Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks. J Geophys Res Space Phys 88(A8): 6109–6120. https://doi.org/10.1029/JA088iA08p06109. [CrossRef] [Google Scholar]
- Li G, Zank GP, Rice WKM. 2005. Acceleration and transport of heavy ions at coronal mass ejection-driven shocks. J Geophys Res Space Phys 110(A6): A06104. https://doi.org/10.1029/2004JA010600. [Google Scholar]
- Ng CK, Reames DV. 2008. Shock acceleration of solar energetic protons: The first 10 minutes. Astrophys J 686(2): L123. https://doi.org/10.1086/592996. [CrossRef] [Google Scholar]
- Palmer ID. 1982. Transport coefficients of low-energy cosmic rays in interplanetary space. Rev Geophys Space Phys 20: 335–351. https://doi.org/10.1029/RG020i002p00335. [CrossRef] [Google Scholar]
- Reames DV. 2023. How do shock waves define the space-time structure of gradual solar energetic particle events?. Space Sci Rev 219(1): 14. https://doi.org/10.1007/s11214-023-00959-x. [CrossRef] [Google Scholar]
- Rice WKM, Zank GP, Li G. 2003. Particle acceleration and coronal mass ejection driven shocks: Shocks of arbitrary strength. J Geophys Res (Space Phys) 108(A10): 1369. https://doi.org/10.1029/2002JA009756. [Google Scholar]
- Roelof EC. 1969. Propagation of solar cosmic rays in the interplanetary magnetic field. In: Lectures in High-Energy Astrophysics, Ögelman H, Wayland JR (Eds.), Scientific and Technical Information Division, Office of Technology Utilization, NASA, Washington, DC, p. 111. [Google Scholar]
- Ruffolo D. 1995. Effect of adiabatic deceleration on the focused transport of solar cosmic rays. Astrophys J 442: 861. https://doi.org/10.1086/175489. [CrossRef] [Google Scholar]
- Vainio R. 2006. Acceleration of SEPs: Role of CME-associated shocks and turbulence. In: Washington DC American Geophysical Union Geophysical Monograph Series, vol. 165, pp. 253–262. https://doi.org/10.1029/165GM24. [Google Scholar]
- Vainio R, Desorgher L, Heynderickx D, Storini M, Flückiger E, et al. 2009. Dynamics of the Earth’s particle radiation environment. Space Sci Rev 147(3–4): 187–231. https://doi.org/10.1007/s11214-009-9496-7. [CrossRef] [Google Scholar]
- Vainio R, Kocharov L, Laitinen T. 2000. Interplanetary and interacting protons accelerated in a parallel shock wave. Astrophys J 528(2): 1015–1025. https://doi.org/10.1086/308202. [CrossRef] [Google Scholar]
- Vainio R, Laitinen T. 2007. Monte Carlo simulations of coronal diffusive shock acceleration in self-generated turbulence. Astrophys J 658(1): 622–630. https://doi.org/10.1086/510284. [CrossRef] [Google Scholar]
- Vainio R, Pönni A, Battarbee M, Koskinen HEJ, Afanasiev A, Laitinen T. 2014. A semi-analytical foreshock model for energetic storm particle events inside 1 AU. J Space Weather Space Clim 4: A08. https://doi.org/10.1051/swsc/2014005. [CrossRef] [EDP Sciences] [Google Scholar]
- Wijsen N, Aran A, Scolini C, Lario D, Afanasiev A, Vainio R, Sanahuja B, Pomoell J, Poedts S. 2022. Observation-based modelling of the energetic storm particle event of 14 July 2012. A&A 659: A187. https://doi.org/10.1051/0004-6361/202142698. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Wijsen N, Lario D, Sánchez-Cano B, Jebaraj IC, Dresing N, et al. 2023. The effect of the ambient solar wind medium on a CME-driven shock and the associated gradual solar energetic particle event. Astrophys J 950(2): 172. https://doi.org/10.3847/1538-4357/acd1ed. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.