Issue |
J. Space Weather Space Clim.
Volume 14, 2024
Topical Issue - CMEs, ICMEs, SEPs: Observational, Modelling, and Forecasting Advances
|
|
---|---|---|
Article Number | 13 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/swsc/2024011 | |
Published online | 08 May 2024 |
- Asvestari E, Pomoell J, Kilpua E, Good S, Chatzistergos T, Temmer M, Palmerio E, Poedts S, Magdalenic J. 2021. Modelling a multi-spacecraft coronal mass ejection encounter with EUHFORIA. A&A 652: A27. https://doi.org/10.1051/0004-6361/202140315. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Cremades H, Bothmer V. 2004. On the three-dimensional configuration of coronal mass ejections. A&A 422: 307–322. https://doi.org/10.1051/0004-6361:20035776. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Fisher RR, Munro RH. 1984. Coronal transient geometry. I – The flare-associated event of 1981 March 25. Astrophys J 280: 428–439. https://doi.org/10.1086/162009. [CrossRef] [Google Scholar]
- Gopalswamy N. 2006. Coronal mass ejections of solar cycle 23. J Astrophys Astron 27: 243–254. https://doi.org/10.1007/BF02702527. [CrossRef] [Google Scholar]
- Harvey JW, Hill F, Hubbard RP, Kennedy JR, Leibacher JW, et al. 1996. The Global Oscillation Network Group (GONG) project. Science 272(5266): 1284–1286. https://doi.org/10.1126/science.272.5266.1284. [CrossRef] [Google Scholar]
- Isavnin A. 2016. FRiED: A novel three-dimensional model of coronal mass ejections. Astrophys J 833(2): 267. https://doi.org/10.3847/1538-4357/833/2/267. [CrossRef] [Google Scholar]
- Jang S, Moon YJ, Kim RS, Lee H, Cho KS. 2016. Comparison between 2D and 3D parameters of 306 front-side halo CMEs from 2009 to 2013. Astrophys J 821(2): 95. https://doi.org/10.3847/0004-637X/821/2/95. [CrossRef] [Google Scholar]
- Kataoka R, Ebisuzaki T, Kusano K, Shiota D, Inoue S, Yamamoto TT, Tokumaru M. 2009. Three dimensional MHD modeling of the solar wind structures associated with 13 December 2006 coronal mass ejection. J Geophys Res 114(A10): A10102. https://doi.org/10.1029/2009JA014167. [Google Scholar]
- Kay C, Nieves-Chinchilla T. 2021. Modeling interplanetary expansion and deformation of CMEs with ANTEATR PARADE: relative contribution of different forces. J Geophys Res Space Phys 126(5): 2020JA028911. https://doi.org/10.1029/2020JA028911. [CrossRef] [Google Scholar]
- Kay C, Palmerio E. 2024. Collection, collation, and comparison of 3d coronal cme reconstructions. Space. Weather 22(1): e2023SW003796. https://doi.org/10.1029/2023SW003796. [CrossRef] [Google Scholar]
- Kilpua EKJ, Lugaz N, Mays ML, Temmer M. 2019. Forecasting the structure and orientation of earthbound coronal mass ejections. Space Weather 17(4): 498–526. https://doi.org/10.1029/2018SW001944. [NASA ADS] [CrossRef] [Google Scholar]
- Kilpua EKJ, Lumme E, Andreeova K, Isavnin A, Koskinen HEJ. 2015. Properties and drivers of fast interplanetary shocks near the orbit of the Earth (1995–2013). J Geophys Res Space Phys 120(6): 4112–4125. https://doi.org/10.1002/2015JA021138. [CrossRef] [Google Scholar]
- Lamy PL, Floyd O, Boclet B, Wojak J, Gilardy H, Barlyaeva T. 2019. Coronal mass ejections over solar cycles 23 and 24. Space Sci Rev 215(5): 39. https://doi.org/10.1007/s11214-019-0605-y. [CrossRef] [Google Scholar]
- Ledvina VE, Palmerio E, Kay C, Al-Haddad N, Riley P. 2023. Modeling CME encounters at parker solar probe with OSPREI: dependence on photospheric and coronal conditions. A&A 673: A96. https://doi.org/10.1051/0004-6361/202245445. [CrossRef] [EDP Sciences] [Google Scholar]
- Lockwood M. 2022. Solar wind – magnetosphere coupling functions: pitfalls, limitations, and applications. Space Weather 20(2): e2021SW002989. https://doi.org/10.1029/2021SW002989. [CrossRef] [Google Scholar]
- Luhmann JG, Gopalswamy N, Jian LK, Lugaz N. 2020. ICME evolution in the inner heliosphere. Sol Phys 295(4): 61. https://doi.org/10.1007/s11207-020-01624-0. [CrossRef] [Google Scholar]
- Luo B, Liu S, Gong J. 2017. Two empirical models for short-term forecast of Kp. Space Weather 15(3): 503–516. https://doi.org/10.1002/2016SW001585. [CrossRef] [Google Scholar]
- Maharana A, Isavnin A, Scolini C, Wijsen N, Rodriguez L, Mierla M, Magdalenić J, Poedts S. 2022. Implementation and validation of the FRi3D flux rope model in EUHFORIA. Adv Space Res 70(6): 1641–1662. https://doi.org/10.1016/j.asr.2022.05.056. [CrossRef] [Google Scholar]
- Manchester W, Kilpua EKJ, Liu YD, Lugaz N, Riley P, Török T, Vršnak B. 2017. The physical processes of CME/ICME evolution. Space Sci Rev 212(3–4): 1159–1219. https://doi.org/10.1007/s11214-017-0394-0. [CrossRef] [Google Scholar]
- Mays ML, Thompson BJ, Jian LK, Colaninno RC, Odstrcil D, et al. 2015. Propagation of the 7 January 2014 CME and resulting geomagnetic non-event. Astrophys J 812(2): 145. https://doi.org/10.1088/0004-637X/812/2/145. [CrossRef] [Google Scholar]
- Millward G, Biesecker D, Pizzo V, de Koning CA. 2013. An operational software tool for the analysis of coronagraph images: determining CME parameters for input into the WSA-Enlil heliospheric model. Space Weather 11(2): 57–68. https://doi.org/10.1002/swe.20024. [NASA ADS] [CrossRef] [Google Scholar]
- Möstl C, Rollett T, Frahm RA, Liu YD, Long DM, et al. 2015. Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars. Nat. Commun. 6: 7135. https://doi.org/10.1038/ncomms8135. [CrossRef] [Google Scholar]
- Newell PT, Sotirelis T, Liou K, Rich FJ. 2008. Pairs of solar wind-magnetosphere coupling functions: Combining a merging term with a viscous term works best. J Geophys Res 113(A4): A04218. https://doi.org/10.1029/2007JA012825. [Google Scholar]
- Odstrcil D. 2003. Modeling 3-D solar wind structure. Adv Space Res 32(4): 497–506. https://doi.org/10.1016/S0273-1177(03)00332-6. [CrossRef] [Google Scholar]
- Odstrcil D. 2023. Heliospheric 3-D MHD ENLIL simulations of multi-CME and multi-spacecraft events. Front. Astron. Space Sci. 10: 1226992. https://doi.org/10.3389/fspas.2023.1226992. [CrossRef] [Google Scholar]
- Odstrcil D, Riley P, Zhao XP. 2004. Numerical simulation of the 12 May 1997 interplanetary CME event. J Geophys Res 109(A2): A02116. https://doi.org/10.1029/2003JA010135. [Google Scholar]
- Ogilvie KW, Chornay DJ, Fritzenreiter RJ, Hunsaker F, Keller J, et al. 1995. SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci Rev 71(1–4): 55–77. https://doi.org/10.1007/BF00751326. [CrossRef] [Google Scholar]
- Ogilvie KW, Desch MD. 1997. The wind spacecraft and its early scientific results. Adv Space Res 20: 559–568. https://doi.org/10.1016/S0273-1177(97)00439-0. [CrossRef] [Google Scholar]
- Palmerio E, Kilpua EKJ, James AW, Green LM, Pomoell J, Isavnin A, Valori G. 2017. Determining the intrinsic CME flux rope type using remote-sensing solar disk observations. Sol Phys 292(2): 39. https://doi.org/10.1007/s11207-017-1063-x. [CrossRef] [Google Scholar]
- Palmerio E, Lee CO, Mays ML, Luhmann JG, Lario D, et al. 2022. CMEs and SEPs during November–December 2020: a challenge for real-time space weather forecasting. Space Weather 20(5): e2021SW002993. https://doi.org/10.1029/2021SW002993. [NASA ADS] [Google Scholar]
- Palmerio E, Maharana A, Lynch BJ, Scolini C, Good SW, Pomoell J, Isavnin A, Kilpua EKJ. 2023. Modeling a coronal mass ejection from an extended filament channel. II. Interplanetary propagation to 1 au. Astrophys J 958(1): 91. https://doi.org/10.3847/1538-4357/ad0229. [CrossRef] [Google Scholar]
- Palmerio E, Scolini C, Barnes D, Magdalenić J, West MJ, et al. 2019. Multipoint study of successive coronal mass ejections driving moderate disturbances at 1 au. Astrophys J 878(1): 37. https://doi.org/10.3847/1538-4357/ab1850. [CrossRef] [Google Scholar]
- Pizzo V, Millward G, Parsons A, Biesecker D, Hill S, Odstrcil D. 2011. Wang-Sheeley-Arge-Enlil cone model transitions to operations. Space Weather 9(3): 03004. https://doi.org/10.1029/2011SW000663. [Google Scholar]
- Pomoell J, Poedts S. 2018. EUHFORIA: European heliospheric forecasting information asset. J Space Weather Space Clim 8: A35. https://doi.org/10.1051/swsc/2018020. [Google Scholar]
- Riley P, Ben-Nun M. 2021. On the sources and sizes of uncertainty in predicting the arrival time of interplanetary coronal mass ejections using global MHD models. Space Weather 19(6): e02775. https://doi.org/10.1029/2021SW002775. [CrossRef] [Google Scholar]
- Riley P, Mays ML, Andries J, Amerstorfer T, Biesecker D, et al. 2018. Forecasting the arrival time of coronal mass ejections: analysis of the CCMC CME scoreboard. Space Weather 16(9): 1245–1260. https://doi.org/10.1029/2018SW001962. [CrossRef] [Google Scholar]
- Scolini C, Chané E, Temmer M, Kilpua EKJ, Dissauer K, et al. 2020. CME–CME interactions as sources of CME geoeffectiveness: the formation of the complex ejecta and intense geomagnetic storm in 2017 early September. Astrophys J Suppl 247(1): 21. https://doi.org/10.3847/1538-4365/ab6216. [CrossRef] [Google Scholar]
- Scolini C, Verbeke C, Poedts S, Chané E, Pomoell J, Zuccarello FP. 2018a. Effect of the initial shape of coronal mass ejections on 3-D MHD simulations and geoeffectiveness predictions. Space Weather 16(6): 754–771. https://doi.org/10.1029/2018SW001806. [CrossRef] [Google Scholar]
- Scolini C, Messerotti M, Poedts S, Rodriguez L. 2018b. Halo coronal mass ejections during solar cycle 24: reconstruction of the global scenario and geoeffectiveness. J Space Weather Space Clim 8: A9. https://doi.org/10.1051/swsc/2017046. [Google Scholar]
- Scolini C, Rodriguez L, Mierla M, Pomoell J, Poedts S. 2019. Observation-based modelling of magnetised coronal mass ejections with EUHFORIA. A&A 626: A122. https://doi.org/10.1051/0004-6361/201935053. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Scolini C, Winslow RM, Lugaz N, Poedts S. 2021. Evolution of interplanetary coronal mass ejection complexity: a numerical study through a swarm of simulated spacecraft. Astrophys J Lett. 916(2): L15. https://doi.org/10.3847/2041-8213/ac0d58. [CrossRef] [Google Scholar]
- Scolini C, Winslow RM, Lugaz N, Poedts S. 2023. Characteristic scales of complexity and coherence within interplanetary coronal mass ejections: insights from spacecraft swarms in global heliospheric simulations. Astrophys J 944(1): 46. https://doi.org/10.3847/1538-4357/aca893. [CrossRef] [Google Scholar]
- Shen F, Liu Y, Yang Y. 2021a. Numerical research on the effect of the initial parameters of a CME flux-rope model on simulation results. Astrophys J Suppl 253(1): 12. https://doi.org/10.3847/1538-4365/abd4d2. [CrossRef] [Google Scholar]
- Shen F, Liu Y, Yang Y. 2021b. Numerical research on the effect of the initial parameters of a CME flux-rope model on simulation results. II. Different locations of observers. Astrophys J 915(1): 30. https://doi.org/10.3847/1538-4357/ac004e. [CrossRef] [Google Scholar]
- Shue JH, Chao JK, Fu HC, Russell CT, Song P, Khurana KK, Singer HJ. 1997. A new functional form to study the solar wind control of the magnetopause size and shape. J Geophys Res 102(A5): 9497–9512. https://doi.org/10.1029/97JA00196. [CrossRef] [Google Scholar]
- Singh T, Yalim MS, Pogorelov NV, Gopalswamy N. 2020. A modified spheromak model suitable for coronal mass ejection simulations. Astrophys J 894(1): 49. https://doi.org/10.3847/1538-4357/ab845f. [CrossRef] [Google Scholar]
- Thernisien A. 2011. Implementation of the graduated cylindrical shell model for the three-dimensional reconstruction of coronal mass ejections. Astrophys J Suppl. 194(2): 33. https://doi.org/10.1088/0067-0049/194/2/33. [CrossRef] [Google Scholar]
- Thernisien A, Vourlidas A, Howard RA. 2009. Forward modeling of coronal mass ejections using STEREO/SECCHI data. Sol Phys 256(1–2): 111–130. https://doi.org/10.1007/s11207-009-9346-5. [CrossRef] [Google Scholar]
- Verbeke C, Mays ML, Kay C, Riley P, Palmerio E, et al. 2023. Quantifying errors in 3D CME parameters derived from synthetic data using white-light reconstruction techniques. Adv Space Res 72(12): 5243–5262. https://doi.org/10.1016/j.asr.2022.08.056. [CrossRef] [Google Scholar]
- Vourlidas A, Lynch BJ, Howard RA, Li Y. 2013. How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Sol Phys 284(1): 179–201. https://doi.org/10.1007/s11207-012-0084-8. [Google Scholar]
- Vourlidas A, Patsourakos S, Savani NP. 2019. Predicting the geoeffective properties of coronal mass ejections: current status, open issues and path forward. Phil Trans R Soc London Ser A 377(2148): 20180096. https://doi.org/10.1098/rsta.2018.0096. [Google Scholar]
- Yurchyshyn V, Hu Q, Lepping RP, Lynch BJ, Krall J. 2007. Orientations of LASCO Halo CMEs and their connection to the flux rope structure of interplanetary CMEs. Adv Space Res 40(12): 1821–1826. https://doi.org/10.1016/j.asr.2007.01.059. [CrossRef] [Google Scholar]
- Zhang M, Feng XS, Yang LP. 2019. Three-dimensional MHD simulation of the 2008 December 12 coronal mass ejection: from the Sun to Interplanetary space. J Space Weather Space Clim 9: A33. https://doi.org/10.1051/swsc/2019034. [CrossRef] [EDP Sciences] [Google Scholar]
- Zhou Y, Feng X, Zhao X. 2014. Using a 3-D MHD simulation to interpret propagation and evolution of a coronal mass ejection observed by multiple spacecraft: the 3 April 2010 event. J Geophys Res Space Phys 119(12): 9321–9333. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.