Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
Topical Issue - Space Climate: Long-term effects of solar variability on the Earth’s environment
|
|
---|---|---|
Article Number | 31 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/swsc/2024031 | |
Published online | 13 November 2024 |
- Andrews MB, Knight JR, Gray LJ. 2015. A simulated lagged response of the North Atlantic Oscillation to the solar cycle over the period 1960–2009. Environ Res Lett 10: 054022. https://doi.org/10.1088/1748-9326/10/5/054022. [CrossRef] [Google Scholar]
- Baldwin MP, Dunkerton TJ. 2001. Stratospheric harbingers of anomalous weather regimes. Science 294: 581–584. [CrossRef] [Google Scholar]
- Baldwin MP, Ayarzagüena B, Birner T, Butchart N, Butler AH, et al. 2021. Sudden stratospheric warmings. Rev Geophys 59: e2020RG000708. https://doi.org/10.1029/2020RG000708. [CrossRef] [Google Scholar]
- Barriopedro D, García-Herrera R, Huth R. 2008. Solar modulation of Northern Hemisphere winter blocking. J Geophys Res 113: D14118. https://doi.org/10.1029/2005JD006813. [Google Scholar]
- Boberg F, Lundstedt H. 2002. Solar wind variations related to fluctuations of the North Atlantic Oscillation. Geophys Res Lett 29(15): 13. https://doi.org/10.1029/2002GL014903. [CrossRef] [Google Scholar]
- Brugnara Y, Brönnimann S, Luterbacher J, Rozanov E. 2013. Influence of the sunspot cycle on the Northern Hemisphere wintertime circulation from long upper-air data set. Atmos Chem Phys 13: 6275–6288. https://doi.org/10.5194/acp-13-6275-2013. [CrossRef] [Google Scholar]
- Chen HS, Ma HD, Li X, Sun SL. 2015. Solar influences on spatial patterns of Eurasian winter temperature and atmospheric general circulation anomalies. J Geophys Res Atmos 120: 8642–8657. https://doi.org/10.1002/2015JD023415. [CrossRef] [Google Scholar]
- Chiodo G, Oehrlein J, Polvani LM, Fyfe JC, Smith AK. 2019. Insignificant influence of the 11-year solar cycle on the North Atlantic Oscillation. Nat Geosci 12: 94–99. https://doi.org/10.1038/s41561-018-0293-3. [CrossRef] [Google Scholar]
- Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, et al. 2010. Solar influences on climate. Rev Geophys 48: RG4001. https://doi.org/10.1029/2009RG000282. [Google Scholar]
- Gray LJ, Scaife AA, Mitchell DM, Osprey S, Ineson S, et al. 2013. A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns. J Geophys Res Atmos 118: 13405–13420. https://doi.org/10.1002/2013JD020062. [Google Scholar]
- Gray LJ, Woollings TJ, Andrews M, Knight J. 2016. Eleven-year solar cycle signal in the NAO and Atlantic/European blocking. Quart J Roy Meteorol Soc 142: 1890–1903. https://doi.org/10.1002/qj.2782. [CrossRef] [Google Scholar]
- Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, et al. 2020. The ERA5 global reanalysis. Quart J Roy Meteorol Soc 146: 1999–2049. https://doi.org/10.1002/qj.3803. [CrossRef] [Google Scholar]
- Hood L, Schimanke S, Spangehl T, Bal S, Cubasch U. 2013. The surface climate response to 11-year solar forcing during northern winter: observational analyses and comparisons with GCM simulations. J Clim 26: 7489–7506. https://doi.org/10.1175/JCLI-D-12-00843.1. [CrossRef] [Google Scholar]
- Hoskins BJ, Hodges KI. 2019. The annual cycle of Northern Hemisphere storm tracks. Part I: Seasons. J Clim 32: 1743–1760. https://doi.org/10.1175/JCLI-D-17-0870.1. [CrossRef] [Google Scholar]
- Huth R, Pokorná L, Bochníček J, Hejda P. 2006. Solar cycle effects on modes of low-frequency circulation variability. J Geophys Res 111: D22107. https://doi.org/10.1029/2005JD006813. [Google Scholar]
- Huth R, Bochníček J, Hejda P. 2007. The 11-year solar cycle affects the intensity and annularity of the Arctic Oscillation. J Atmos Sol-Terr Phys 69: 1095–1109. https://doi.org/10.1016/j.jastp.2007.03.006. [CrossRef] [Google Scholar]
- Huth R, Kyselý J, Bochníček J, Hejda P. 2008. Solar activity affects the occurrence of synoptic types over Europe. Ann Geophys 26: 1999–2004. https://doi.org/10.5194/angeo-26-1999-2004. [CrossRef] [Google Scholar]
- Hynčica M, Huth R. 2022. Temporal evolution of relationships between temperature and circulation modes in five reanalyses. Int J Climatol 42: 4391–4404. https://doi.org/10.1002/joc.7474. [CrossRef] [Google Scholar]
- Ineson S, Scaife AA, Knight JR, Manners JC, Dunstone NJ, et al. 2011. Solar forcing of winter climate variability in the Northern Hemisphere. Nat Geosci 4: 753–757. https://doi.org/10.1038/NGEO1282. [CrossRef] [Google Scholar]
- Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, et al. 1996. The NCEP-NCAR 40-year reanalysis project. Bull Amer Meteorol Soc 77: 437–471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2. [CrossRef] [Google Scholar]
- Kodera K. 2002. Solar cycle modulation of the North Atlantic Oscillation: implication in the spatial structure of the NAO. Geophys Res Lett 29: 1218. https://doi.org/10.1029/2001GL014557. [CrossRef] [Google Scholar]
- Kodera K. 2003. Solar influence on the spatial structure of the NAO during the winter 1900–1999. Geophys Res Lett 30: 1175. https://doi.org/10.1029/2002GL016584. [Google Scholar]
- Kuroda Y, Kodera K, Yoshida K, Yukimoto S, Gray L. 2022. Influence of the solar cycle on the North Atlantic Oscillation. J Geophys Res Atmos 127: e2021JD035519. https://doi.org/10.1029/2021JD035519. [CrossRef] [Google Scholar]
- Laken BA, Čalogović J. 2013. Composite analysis with Monte Carlo methods: an example with cosmic rays and clouds. J Sp Wea Sp Clim 3: A29. https://doi.org/10.1051/swsc/2013051. [Google Scholar]
- Laken BA, Stordal F. 2016. Are there statistical links between the direction of European weather systems and ENSO, the solar cycle or stratospheric aerosols? Roy Soc Open Sci 3: 150320. https://doi.org/10.1098/rsos.150320. [CrossRef] [Google Scholar]
- Liu ZF, Yoshimura K, Buenning NH, He XG. 2014. Solar cycle modulation of the Pacific-North American teleconnection influence on North American winter climate. Environ Res Lett 9: 024004. https://doi.org/10.1088/1748-9326/9/2/024004. [CrossRef] [Google Scholar]
- Livezey RE, Chen WY. 1983. Statistical field significance and its determination by Monte Carlo techniques. Mon Wea Rev 111: 46–59. [CrossRef] [Google Scholar]
- Ma H, Chen H, Gray L, Zhou L, Li X, et al. 2018. Changing response of the North Atlantic/European winter climate to the 11 year solar cycle. Environ Res Lett 13: 034007. https://doi.org/10.1088/1748-9326/aa9e94. [CrossRef] [Google Scholar]
- Maliniemi V, Asikainen T, Mursula K, Seppälä A. 2013. QBO-dependent relation between electron precipitation and wintertime surface temperature. J Geophys Res Atmos 118: 6302–6310. https://doi.org/10.1002/jgrd.50518. [CrossRef] [Google Scholar]
- Maliniemi V, Asikainen T, Mursula K. 2016. Effect of geomagnetic activity on the northern annular mode: QBO dependence and the Holton-Tan relationship. J Geophys Res Atmos 121: 10043–10055. https://doi.org/10.1002/2015JD024460. [Google Scholar]
- Maliniemi V, Asikainen T, Salminen A, Mursula K. 2019. Assessing North Atlantic winter climate response to geomagnetic activity and solar irradiance variability. Quart J Roy Meteorol Soc 145: 3780–3789. https://doi.org/10.1002/qj.3657. [CrossRef] [Google Scholar]
- Meehl GA, Arblaster JM, Branstator G, van Loon H. 2008. A coupled air-sea response mechanism to solar forcing in the Pacific region. J Clim 21: 2883–2897. https://doi.org/10.1175/2007JCLI1776.1. [CrossRef] [Google Scholar]
- Meehl GA, Arblaster JM, Matthes K, Sassi F, van Loon H. 2009. Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science 325: 1114–1118. https://doi.org/10.1126/science.1172872. [CrossRef] [Google Scholar]
- Mitchell DM, Gray LJ, Fujiwara M, Hibino T, Anstey JA, et al. 2015. Signatures of naturally induced variability in the atmosphere using multiple reanalysis datasets. Quart J Roy Meteorol Soc 141: 2011–2031. https://doi.org/10.1002/qj.2492. [CrossRef] [Google Scholar]
- Ogi M, Yamazaki K, Tachibana Y. 2003. Solar cycle modulation of the seasonal linkage of the North Atlantic Oscillation (NAO). Geophys Res Lett 30: 2170. https://doi.org/10.1029/2003GL018545. [Google Scholar]
- Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108: 4407. https://doi.org/10.1029/2002JD002670. [Google Scholar]
- Richman MB, Lamb PJ. 1985. Climatic pattern analysis of three- and seven-day summer rainfall in the Central United States: some methodological considerations and a regionalization. J Clim Appl Meteorol 24: 1325–1343. [CrossRef] [Google Scholar]
- Roy I, Haigh JD. 2011. The influence of solar variability and the quasi-biennial oscillation on lower atmospheric temperatures and sea level pressure. Atmos Chem Phys 11: 11679–11687. https://doi.org/10.5194/acp-11-11679-2011. [CrossRef] [Google Scholar]
- Scaife AA, Ineson S, Knight JR, Gray L, Kodera K, Smith DM. 2013. A mechanism for lagged North Atlantic climate response to solar variability. Geophys Res Lett 40: 434–439. https://doi.org/10.1002/grl.50099. [CrossRef] [Google Scholar]
- Schwander M, Rohrer M, Brönnimann S, Malik A. 2017. Influence of solar variability on the occurrence of central European weather types from 1763 to 2009. Clim Past 13: 1199–1212. https://doi.org/10.5194/cp-13-1199-2017. [CrossRef] [Google Scholar]
- Sfică L, Voiculescu M, Huth R. 2015. The influence of solar activity on action centres of atmospheric circulation in North Atlantic. Ann Geophys 33: 207–215. https://doi.org/10.5194/angeo-33-207-2015. [CrossRef] [Google Scholar]
- Siddiqui TA, Yamazaki Y, Stolle C, Lühr H, Matzka J, et al. 2018. Dependence of lunar tide of the equatorial electrojet on the wintertime polar vortex, solar flux, and QBO. Geophys Res Lett 45: 3801–3810. https://doi.org/10.1029/2018GL077510. [CrossRef] [Google Scholar]
- Spiegl TC, Langematz U, Pohlmann H, Kröger J. 2023. A critical evaluation of decadal solar cycle imprints in the MiKlip historical ensemble simulations. Wea Clim Dyn 4: 789–807. https://doi.org/10.5194/wcd-4-789-2023. [CrossRef] [Google Scholar]
- van Loon H, Labitzke K. 1988. Association between the 11-year solar cycle, the QBO, and the atmosphere. Part II: Surface and 700 mb in the Northern Hemisphere in winter. J Clim 1: 905–920. [CrossRef] [Google Scholar]
- Vautard R, Mo KC, Ghil M. 1990. Statistical significance test for transition matrices of atmospheric Markov chains. J Atmos Sci 47: 1926–1931. [CrossRef] [Google Scholar]
- Wallace JM, Gutzler DS. 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Wea Rev 109: 784–812. [CrossRef] [Google Scholar]
- Wilks DS. 2006. Statistical methods in the atmospheric sciences. 2nd ed. Academic Press, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, p. 627. [Google Scholar]
- Woollings T, Lockwood M, Masato G, Bell C, Gray L. 2010. Enhanced signature of solar variability in Eurasian winter climate. Geophys Res Lett 37: L20805. https://doi.org/10.1029/2010GL044601. [CrossRef] [Google Scholar]
- Zhu Z, Zhou L, Zheng X. 2020. Solar wind signal in the wintertime North Atlantic oscillation and Northern Hemispheric circulation. Int J Climatol 40: 4272–4288. https://doi.org/10.1002/joc.6461. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.