Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
Topical Issue - Observing, modelling and forecasting TIDs and mitigating their impact on technology
|
|
---|---|---|
Article Number | 17 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/swsc/2024017 | |
Published online | 01 August 2024 |
- Afraimovich EL, Palamartchouk KS, Perevalova NP. 1998. GPS radio interferometry of travelling ionospheric disturbances. J Atmosph Solar-Terrestrial Phys 60: 1205–1223. https://doi.org/10.1016/S1364-6826(98)00074-1. [CrossRef] [Google Scholar]
- Angrisano A, Gaglione S, Gioia C, Massaro M, Robustelli U. 2013. Assessment of NeQuick ionospheric model for Galileo single-frequency users. Acta Geophysica 61(6): 1457–1476. https://doi.org/10.2478/s11600-013-0116-2. [NASA ADS] [CrossRef] [Google Scholar]
- Artru J, Ducic V, Kanamori H, Lognonné P, Murakami M. 2005. Ionospheric detection of gravity waves induced by tsunamis. Geophys J Int 160: 840–848. https://doi.org/10.1111/j.1365-246X.2005.02552.x. [CrossRef] [Google Scholar]
- Astafyeva E. 2019. Ionospheric Detection of Natural Hazards. Rev Geophys 57: 1265–1288. https://doi.org/10.1029/2019RG000668. [CrossRef] [Google Scholar]
- Astafyeva E, Heki K. 2009. Dependence of waveform of near-field coseismic ionospheric disturbances on focal mechanisms. Earth, Planets and Space 61: 939–943. https://doi.org/10.1186/BF03353206. [CrossRef] [Google Scholar]
- Astafyeva E, Heki K, Kiryushkin V, Afraimovich E, Shalimov S. 2009. Two-mode long-distance propagation of coseismic ionosphere disturbances. J Geophys Res 114: A10307. https://doi.org/10.1029/2008JA013853. [CrossRef] [Google Scholar]
- Astafyeva E, Maletckii B, Mikesell TD, Munaibari E, Ravanelli M, Coisson P, Manta F, Rolland L. 2022. The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations. Geophysical Research Letters 49: e2022GL098827. https://doi.org/10.1029/2022GL098827. [CrossRef] [Google Scholar]
- Astafyeva E, Shults K. 2019. Ionospheric GNSS imagery of seismic source: possibilities, difficulties, and challenges. J Geophys Res Space Phys 124: 534–543. https://doi.org/10.1029/2018JA026107. [CrossRef] [Google Scholar]
- Basu S, Groves KM, Basu Su, Sultan PJ. 2002. Specification and forecasting of scintillations in communication/navigation links: Current status and future plans. J Atmos Solar-Terrestrial Phys 64(16): 1745–1754. https://doi.org/10.1016/S1364-6826(02)00124-4. [CrossRef] [Google Scholar]
- Belehaki A, Tsagouri I, Altadill D, Blanch E, Borries C, Buresova D, Chum J, Galkin I, Juan JM, Segarra A, Timote CC, Tziotziou K, Verhulst TGW, Watermann J. 2020. An overview of methodologies for real-time detection, characterisation and tracking of traveling ionospheric disturbances developed in the TechTIDE project. J Space Weather Space Clim 10: 42. https://doi.org/10.1051/swsc/2020043. [CrossRef] [EDP Sciences] [Google Scholar]
- Boyde B, Wood A, Dorrian G, Fallows RA, Themens D, Mielich J, Elvidge S, Mevius M, Zucca P, Dabrowski B, Krankowski A, Vocks C, Bisi M. 2022. Lensing from small-scale travelling ionospheric disturbances observed using LOFAR. J Space Weather Space Clim 12: 34. https://doi.org/10.1051/swsc/2022030. [CrossRef] [EDP Sciences] [Google Scholar]
- Borries C, Jakowski N, Wilken V. 2009. Storm induced large scale TIDs observed in GPS derived TEC. Annales Geophysicae 27: 1605–1612. https://doi.org/10.5194/angeo-27-1605-2009. [CrossRef] [Google Scholar]
- Braasch M. 1996. Multipath Effects. Global Positioning System: Theory and Applications. American Institute of Aeronautics and Astronautics I(1–0): 547–568. https://doi.org/10.2514/5.9781600866388.0547.0568. [Google Scholar]
- Brissaud Q, Astafyeva E. 2022. Near-real-time detection of co-seismic ionospheric disturbances using machine learning. Geophys J Int 230(3): 2117–2130. https://doi.org/10.1093/gji/ggac167. [CrossRef] [Google Scholar]
- Bukowski A, Ridley A, Huba JD, Valladares C, Anderson PC. 2024. Investigation of large scale traveling atmospheric/ionospheric disturbances using the coupled SAMI3 and GITM models. Geophys Res Lett 51(2): e2023GL106015. https://doi.org/10.1029/2023GL106015. [CrossRef] [Google Scholar]
- Calais E, Haase JS, Minster JB. 2003. Detection of ionospheric perturbations using a dense GPS array in Southern California. Geophys Res Lett 30(12). https://doi.org/10.1029/2003GL017708. [CrossRef] [Google Scholar]
- Cesaroni C, Alfonsi L, Pezzopane M, Martinis C, Baumgardner J, Wroten J, Mendillo M, Musicò E, Lazzarin M, Umbriaco G. 2017. The first use of coordinated ionospheric radio and optical observations over Italy: Convergence of high-and low-latitude storm-induced effects. J Geophys Res Space Phys 122: 11794–11806. https://doi.org/10.1002/2017JA024325. [CrossRef] [Google Scholar]
- Cesaroni C, Marcocci C, Pica E, Spogli L, Upper Atmosphere Physics And Radiopropagation Working Group. 2020. Electronic Space Weather upper atmosphere database. (eSWua) [WWW Document]. https://doi.org/10.13127/ESWUA/TEC (accessed 8.7.23). [Google Scholar]
- Cesaroni C, Spogli L, Alfonsi L, De Franceschi G, Ciraolo L, Galera Monico JF, Scotto C, Romano V, Aquino M, Bougard B. 2015. L-band scintillations and calibrated total electron content gradients over Brazil during the last solar maximum. J Space Weather Space Clim 5(A36): 2015. https://doi.org/10.1051/swsc/2015038. [CrossRef] [EDP Sciences] [Google Scholar]
- Cesaroni C, Spogli L, De Franceschi G. 2021. IONORING: Real-time monitoring of the total electron content over Italy. Remote Sensing 13(16): 3290. https://doi.org/10.3390/rs13163290. [CrossRef] [Google Scholar]
- Chimonas G, Hines CO. 1970. Atmospheric gravity waves induced by a solar eclipse. J Geophys Res 75: 875–875. https://doi.org/10.1029/ja075i004p00875. [CrossRef] [Google Scholar]
- Chou MY, Lin CCH, Yue J, Tsai HF, Sun YY, Liu JY, Chen CH. 2017. Concentric traveling ionosphere disturbances triggered by Super Typhoon Meranti (2016). Geophys Res Lett 44: 1219–1226. https://doi.org/10.1002/2016GL072205. [CrossRef] [Google Scholar]
- Cicone A. 2023. https://github.com/Acicone/FIF/releases/tag/2.12.1. [Google Scholar]
- Cicone A, Zhou H. 2021. Numerical analysis for iterative filtering with new efficient implementations based on FFT. Numer Math 147: 1–28. https://doi.org/10.1007/s00211-020-01165-5. [CrossRef] [Google Scholar]
- Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella SM. 2007. Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geodesy 81: 111–120. https://doi.org/10.1007/s00190-006-0093-1. [CrossRef] [Google Scholar]
- Coster A, Herne D, Erickson P, Oberoi D. 2012. Using the Murchison widefield array to observe midlatitude space weather. Radio Sci 47: RS0K07. https://doi.org/10.1029/2012RS004993. [CrossRef] [Google Scholar]
- Coster AJ, Goncharenko L, Zhang SR, Erickson PJ, Rideout W, Vierinen J. 2017. GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse. Geophys Res Lett 44(24): 12041–12048. https://doi.org/10.1002/2017GL075774. [CrossRef] [Google Scholar]
- Eastes RW, Solomon SC, Daniell RE, Anderson DN, Burns AG, England SL, Martinis CR, McClintock WE. 2019. Global-scale observations of the equatorial ionization anomaly. Geophys Res Lett 46(16): 9318–9326. https://doi.org/10.1029/2019GL084199. [CrossRef] [Google Scholar]
- Ferreira AA, Borries C, Xiong C, Borges RA, Mielich J, Kouba D. 2020. Identification of potential precursors for the occurrence of Large-Scale Traveling Ionospheric Disturbances in a case study during September 2017. J Space Weather Space Climate 10: 32. https://doi.org/10.1051/swsc/2020029. [CrossRef] [EDP Sciences] [Google Scholar]
- Frissell NA, Kaeppler SR, Sanchez DF, Perry GW, Engelke WD, Erickson PJ, Coster AJ, Ruohoniemi JM, Baker JBH, West ML. 2022. First Observations of Large Scale Traveling Ionospheric Disturbances Using Automated Amateur Radio Receiving Networks. Geophys Res Lett 49: e2022GL097879. https://doi.org/10.1029/2022GL097879. [CrossRef] [Google Scholar]
- Fung, S, Benson, R, Galkin, I, Green, J, Reinisch, B, Song, P, Sonwalkar, V. 2022. Radio-frequency imaging techniques for ionospheric, magnetospheric, and planetary studies, in: Understanding the Space Environment through Global Measurements. Elsevier, pp. 101–216. https://doi.org/10.1016/B978-0-12-820630-0.00006-4. [Google Scholar]
- Ghobadi H, Spogli L, Alfonsi L, Cesaroni C, Cicone A, Linty N, Romano V, Cafaro M. 2020. Disentangling ionospheric refraction and diffraction effects in GNSS raw phase through fast iterative filtering technique. GPS Solut 24: 85. https://doi.org/10.1007/s10291-020-01001-1. [CrossRef] [Google Scholar]
- Heki K, Ping J. 2005. Directivity and apparent velocity of the coseismic ionospheric disturbances observed with a dense GPS array. Earth and Planetary Science Letters 236: 845–855. https://doi.org/10.1016/j.epsl.2005.06.010. [CrossRef] [Google Scholar]
- Habarulema JB, Katamzi ZT, Yizengaw E, Yamazaki Y, Seemala G. 2016. Simultaneous storm time equatorward and poleward large-scale TIDs on a global scale. Geophys Res Lett 43(13): 6678–6686. https://doi.org/10.1002/2016GL069740. [CrossRef] [Google Scholar]
- Habarulema JB, Thaganyana GP, Katamzi-Joseph ZT, Yizengaw E, Moldwin MB, Ngwira CM. 2022. A Statistical Study of Poleward Traveling Ionospheric Disturbances Over the African and American Sectors During Geomagnetic Storms. J Geophys Res Space Phys 127(4): e2021JA030162. https://doi.org/10.1029/2021JA030162. [CrossRef] [Google Scholar]
- Hernández-Pajares M, Juan JM, Sanz J. 2006. Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis. J Geophys Res 111: A07S11. https://doi.org/10.1029/2005JA011474. [CrossRef] [Google Scholar]
- Hernández-Pajares M, Juan JM, Sanz J, Aragón-Ángel A. 2012. Propagation of medium scale traveling ionospheric disturbances at different latitudes and solar cycle conditions. Radio Sci 47(4): . https://doi.org/10.1029/2011RS004951. [CrossRef] [Google Scholar]
- Hernández-Pajares M, Wielgosz P, Paziewski J, Krypiak-Gregorczyk A, Krukowska M, Stepniak K, Kaplon J, Hadas T, Sosnica K, Bosy J, Orus-Perez R, Monte-Moreno E, Yang H, Garcia-Rigo A, Olivares-Pulido G. 2017. Direct MSTID mitigation in precise GPS processing. Radio Sci 52: 321–337. https://doi.org/10.1002/2016RS006159. [CrossRef] [Google Scholar]
- Hines CO. 1974. The Upper Atmosphere in Motion. The Upper Atmosphere in Motion. American Geophysical Union (AGU). pp. 14–93. https://doi.org/10.1029/GM018p0014. [CrossRef] [Google Scholar]
- Hocke K, Schlegel K. 1996. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Annales Geophysicae 14(9): 917–940. https://doi.org/10.1007/s00585-996-0917-6. [Google Scholar]
- Hooke WH. 1968. Ionospheric irregularities produced by internal atmospheric gravity waves. Journal of Atmospheric and Terrestrial Physics 30(5): 795–823. https://doi.org/10.1016/S0021-9169(68)80033-9. [CrossRef] [Google Scholar]
- Jing N, Hunsucker RD. 1993. A theoretical investigation of sources of large and medium scale atmospheric gravity waves in the auroral oval. Journal of Atmospheric and Terrestrial Physics 55(13): 1667–1679. https://doi.org/10.1016/0021-9169(93)90171-T. [CrossRef] [Google Scholar]
- Huang, NE, Shen, Z, Long, SR, Wu, MC, Shih, HH, Zheng, Q, Yen, NC, Tung, CC, Liu, HH. 1998. The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis. Proceedings of the Royal Society of London Series A 454, 903–998. https://doi.org/10.1098/rspa.1998.0193. [CrossRef] [Google Scholar]
- Hunsucker RD. 1982. Atmospheric gravity waves generated in the high-latitude ionosphere: A review. Reviews of Geophysics 20(2): 293–315. https://doi.org/10.1029/RG020i002p00293. [CrossRef] [Google Scholar]
- Katamzi ZT, Smith ND, Mitchell CN, Spalla P, Materassi M. 2012. Statistical analysis of travelling ionospheric disturbances using TEC observations from geostationary satellites. J Atmos Solar-Terrestrial Phys 74: 64–80. https://doi.org/10.1016/j.jastp.2011.10.006. [CrossRef] [Google Scholar]
- Kersley L, Hughes KA. 1989. On the distinction between large-scale and medium-scale atmospheric gravity waves. Ann Geophys 7: 459–461. [Google Scholar]
- Leonard, RS, Barnes Jr, RA. 1965. Observation of ionospheric disturbances following the Alaska earthquake. J Geophys Res (1896–1977), 70(5), 1250–1253. https://doi.org/10.1029/JZ070i005p01250. [CrossRef] [Google Scholar]
- Komjathy A, Galvan DA, Stephens P, Butala MD, Akopian V, Wilson B, Verkhoglyadova O, Mannucci AJ, Hickey M. 2012. Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case study. Earth Planet Sp 64: 1287–1294. https://doi.org/10.5047/eps.2012.08.003. [CrossRef] [Google Scholar]
- Kotulak K, Zakharenkova I, Krankowski A, Cherniak I, Wang N, Fron A. 2020. Climatology Characteristics of Ionospheric Irregularities Described with GNSS ROTI. Remote Sensing 12(16): Article 16. https://doi.org/10.3390/rs12162634. [CrossRef] [Google Scholar]
- Lay EH, Shao XM, Carrano CS. 2013. Variation in total electron content above large thunderstorms. Geophys Res Lett 40: 1945–1949. https://doi.org/10.1002/grl.50499. [CrossRef] [Google Scholar]
- Li X, Zhang B, Hu Z, Hu H, Liu R, Yang H, He F. 2022. A comparative study of ionospheric TEC diurnal variations at two stations near cusp latitudes in the Southern Hemisphere. Adv Space Res 69(10): 3668–3676. https://doi.org/10.1016/j.asr.2022.03.008. [CrossRef] [Google Scholar]
- Madonia P, Bonaccorso A, Bonforte A, Buonocunto C, Cannata A, Carleo L, Cesaroni C, Currenti G, De Gregorio S, Di Lieto B, Guerra M, Orazi M, Pasotti L, Peluso R, Pezzopane M, Restivo V, Romano P, Sciotto M, Spogli L. 2023. Propagation of Perturbations in the Lower and Upper Atmosphere over the Central Mediterranean, Driven by the 15 January 2022 Hunga Tonga-Hunga Ha’apai Volcano Explosion. Atmosphere 14: 65. https://doi.org/10.3390/atmos14010065. [CrossRef] [Google Scholar]
- Makela JJ, Otsuka Y. 2012. Overview of Nighttime Ionospheric Instabilities at Low- and Mid-Latitudes: Coupling Aspects Resulting in Structuring at the Mesoscale. Space Sci Rev 168: 419–440. https://doi.org/10.1007/s11214-011-9816-6. [CrossRef] [Google Scholar]
- Maletckii B, Astafyeva E. 2021. Determining spatio-temporal characteristics of coseismic travelling ionospheric disturbances (CTID) in near real-time. Sci Rep 11: 20783. https://doi.org/10.1038/s41598-021-99906-5. [CrossRef] [Google Scholar]
- Maletckii B, Yasyukevich Y, Vesnin A. 2020. Wave signatures in total electron content variations: Filtering problems. Remote Sens 12(8): 1340. https://doi.org/10.3390/RS12081340. [CrossRef] [Google Scholar]
- Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF. 1998. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33: 565–582. https://doi.org/10.1029/97RS02707. [CrossRef] [Google Scholar]
- Mansoori AA, Khan PA, Bhawre P, Gwal AK, Purohit PK. 2013. Variability of TEC at mid latitude with solar activity during the solar cycle 23 and 24. IEEE Int Conf Space Sci Commun (IconSpace) 2013: 83–87. https://doi.org/10.1109/IconSpace.2013.6599438. [Google Scholar]
- Martire L, Krishnamoorthy S, Vergados P, Romans LJ, Szilágyi B, Meng X, Anderson JL, Komjáthy A, Bar-Sever YE. 2022. The GUARDIAN system-a GNSS upper atmospheric real-time disaster information and alert network. GPS Solut 27: 32. https://doi.org/10.1007/s10291-022-01365-6. [Google Scholar]
- Nava B, Coisson P, Radicella SM. 2008. A new version of the NeQuick ionosphere electron density model. J Atmos Solar-Terrestrial Phys 70(15): 1856–1862. ISSN 1364–6826.. https://doi.org/10.1016/j.jastp.2008.01.015. [CrossRef] [Google Scholar]
- Nishioka M, Tsugawa T, Kubota M, Ishii M. 2013. Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado. Geophys Res Lett 40(21): 5581–5586. https://doi.org/10.1002/2013GL057963. [CrossRef] [Google Scholar]
- Osei-Poku L, Tang L, Chen W, Mingli C. 2021. Evaluating total electron content (Tec) detrending techniques in determining ionospheric disturbances during lightning events in a low latitude region. Remote Sens 13(23). https://doi.org/10.3390/rs13234753. [CrossRef] [Google Scholar]
- Otsuka Y, Shinbori A, Tsugawa T, Nishioka M. 2021. Solar activity dependence of medium-scale traveling ionospheric disturbances using GPS receivers in Japan. Earth, Planets and Space 73(1): 22. https://doi.org/10.1186/s40623-020-01353-5. [CrossRef] [Google Scholar]
- Otsuka Y, Suzuki K, Nakagawa S, Nishioka M, Shiokawa K, Tsugawa T. 2013. GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann Geophys 31(2): 163–172. https://doi.org/10.5194/angeo-31-163-2013. [CrossRef] [Google Scholar]
- Penney RW, Jackson-Booth NK. 2015. Mitigating satellite motion in GPS monitoring of traveling ionospheric disturbances. Radio Sci 50(11): 1150–1164. https://doi.org/10.1002/2015RS005767. [CrossRef] [Google Scholar]
- Poniatowski M, Nykiel G. 2020. Degradation of kinematic ppp of gnss stations in central europe caused by medium-scale traveling ionospheric disturbances during the st. Patrick’s day 2015 geomagnetic storm. Remote Sens 12: 1–15. https://doi.org/10.3390/rs12213582. [Google Scholar]
- Pradipta R, Valladares CE, Doherty PH. 2014. GPS observation of continent-size traveling TEC pulsations at the start of geomagnetic storms. J Geophys Res Space Phys 119(8): 6913–6924. https://doi.org/10.1002/2014JA020177. [CrossRef] [Google Scholar]
- Pradipta R, Valladares CE, Carter BA, Doherty PH. 2016. Interhemispheric propagation and interactions of auroral traveling ionospheric disturbances near the equator. J Geophys Res Space Phys 121(3): 2462–2474. https://doi.org/10.1002/2015JA022043. [CrossRef] [Google Scholar]
- Ravanelli M, Astafyeva E, Munaibari E, Rolland L, Mikesell TD. 2023. Ocean-ionosphere disturbances due to the 15 January 2022 Hunga-Tonga Hunga-Ha’apai Eruption. Geophys Res Lett 50: e2022GL101465. https://doi.org/10.1029/2022GL101465. [CrossRef] [Google Scholar]
- Ravanelli M, Occhipinti G, Savastano G, Komjathy A, Shume EB, Crespi M. 2021. GNSS total variometric approach: first demonstration of a tool for real-time tsunami genesis estimation. Sci Rep 11: 3114. https://doi.org/10.1038/s41598-021-82532-6. [CrossRef] [Google Scholar]
- INGV RING WORKING GROUP. 2016. RETE INTEGRATA NAZIONALE GNSS. https://doi.org/10.13127/RING. [Google Scholar]
- Savastano G, Komjathy A, Verkhoglyadova O, Mazzoni A, Crespi M, Wei Y, Mannucci AJ. 2017. Real-time detection of tsunami ionospheric disturbances with a stand-alone GNSS receiver: A preliminary feasibility demonstration. Sci Rep 7: 46607. https://doi.org/10.1038/srep46607. [CrossRef] [Google Scholar]
- Savastano, G, Ravanelli, M. 2019. Real-time monitoring of ionospheric irregularities and TEC Perturbations. Satellites Missions and Technologies for Geosciences (p. Ch. 3). https://doi.org/10.5772/intechopen.90036. [Google Scholar]
- Schafer R. 2011. What Is a Savitzky-Golay Filter? [Lecture notes]. IEEE Signal Processing Magazine 28(4): 111–117. https://doi.org/10.1109/MSP.2011.941097. [CrossRef] [Google Scholar]
- Song Q, Ding F, Wan W, Ning B, Liu L, Zhao B, Li Q, Zhang R. 2013. Statistical study of large-scale traveling ionospheric disturbances generated by the solar terminator over China. J Geophys Res Space Phys 118: 4583–4593. https://doi.org/10.1002/jgra.50423. [CrossRef] [Google Scholar]
- Spogli, L, Ghobadi, H, Cicone, A, Alfonsi, L, Cesaroni, C, Linty, N, Romano, V, Cafaro, M. 2021. Adaptive phase detrending for GNSS scintillation detection: a case study over Antarctica. IEEE Geosci Remote Sens Lett, 19, 1–5, 2022, Art no. 8009905. https://doi.org/10.1109/LGRS.2021.3067727. [CrossRef] [Google Scholar]
- Spogli L, Piersanti M, Cesaroni C, Materassi M, Cicone A, Alfonsi L, Romano V, Ezquer RG. 2019. Role of the external drivers in the occurrence of low-latitude ionospheric scintillation revealed by multi-scale analysis. J Space Weather Space Clim 9: A35. https://doi.org/10.1051/swsc/2019032. [CrossRef] [EDP Sciences] [Google Scholar]
- Stallone A, Cicone A, Materassi M. 2020. New insights and best practices for the successful use of Empirical Mode Decomposition, Iterative Filtering and derived algorithms. Sci Rep 10: 15161. https://doi.org/10.1038/s41598-020-72193-2. [CrossRef] [Google Scholar]
- Thaganyana GP, Habarulema JB, Ngwira C, Azeem I. 2022. Equatorward Medium to Large-Scale Traveling Ionospheric Disturbances of High Latitude Origin During Quiet Conditions. J Geophys Res Space Phys 127(3): e2021JA029558. https://doi.org/10.1029/2021JA029558. [CrossRef] [Google Scholar]
- Themens DR, Watson C, Žagar N, Vasylkevych S, Elvidge S, McCaffrey A, Prikryl P, Reid B, Wood A, Jayachandran PT. 2022. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption. Geophys Res Lett 49: e2022GL098158. https://doi.org/10.1029/2022GL098158. [CrossRef] [Google Scholar]
- Thomas D, Bagiya MS, Sunil PS, Rolland L, Sunil AS, Mikesell TD, Nayak S, Mangalampalli S, Ramesh DS. 2018. Revelation of early detection of co-seismic ionospheric perturbations in GPS-TEC from realistic modelling approach: Case study. Sci Rep 8: 12105. https://doi.org/10.1038/s41598-018-30476-9. [CrossRef] [Google Scholar]
- Timoté CC, Juan JM, Sanz J, González-Casado G, Rovira-Garciá A, Escudero M. 2020. Impact of medium-scale traveling ionospheric disturbances on network real-time kinematic services: CATNET study case. J Space Weather Space Clim 10: 29. https://doi.org/10.1051/swsc/2020030. [CrossRef] [EDP Sciences] [Google Scholar]
- Tornatore V, Cesaroni C, Pezzopane M, Alizadeh MM, Schuh H. 2021. Performance evaluation of VTEC GIMs for regional applications during different solar activity periods, using RING TEC values. Remote Sens 13(8): 1470. https://doi.org/10.3390/rs13081470. [CrossRef] [Google Scholar]
- Tsugawa T, Nishioka M, Ishii M, Hozumi K, Saito S, Shinbori A, Otsuka Y, Saito A, Buhari SM, Abdullah M, Supnithi P. 2018. Total Electron Content Observations by Dense Regional and Worldwide International Networks of GNSS. J Disaster Res 13: 535–545. https://doi.org/10.20965/jdr.2018.p0535. [CrossRef] [Google Scholar]
- Tsybulya K, Jakowski N. 2005. Medium- and small-scale ionospheric irregularities detected by GPS radio occultation method. Geophys Res Lett 32(9): 1–4. https://doi.org/10.1029/2005GL022420. [CrossRef] [Google Scholar]
- Urbar, J, Spogli, L, Cicone, A, Clausen, LBN, Jin, Y, Wood, AG, Alfonsi, L, Cesaroni, C, Kotova, D, Høeg, P, Miloch, WJ. 2022. Multi-scale response of the high-latitude topside ionosphere to geospace forcing. Adv Space Res, 72(12), 2023, 5490–5502, ISSN 0273–1177. https://doi.org/10.1016/j.asr.2022.06.045. [Google Scholar]
- Van De Kamp M, Pokhotelov D, Kauristie K. 2014. TID characterized using joint effort of incoherent scatter radar and GPS. Ann Geophys 32(12): 1511–1532. https://doi.org/10.5194/ANGEO-32-1511-2014. [CrossRef] [Google Scholar]
- Verhulst TGW, Altadill D, Barta V, Belehaki A, Burešová D, Cesaroni C, Galkin I, Guerra M, Ippolito A, Herekakis T, Kouba D, Mielich J, Segarra A, Spogli L, Tsagouri I. 2022. Multi-instrument detection in Europe of ionospheric disturbances caused by the 15 January 2022 eruption of the Hunga volcano. J Space Weather Space Clim 12: 35. https://doi.org/10.1051/swsc/2022032. [CrossRef] [EDP Sciences] [Google Scholar]
- Venkatesh K, Rao P, Prasad D, Niranjan K, Saranya DPL. 2011. Study of TEC, slab-thickness and neutral temperature of the thermosphere in the Indian low latitude sector. Ann Geophys 29: 1635–1645. https://doi.org/10.5194/angeo-29-1635-2011. [CrossRef] [Google Scholar]
- Wang M, Ding F, Wan W, Ning B, Zhao B. 2007. Monitoring global traveling ionospheric disturbances using the worldwide GPS network during the October 2003 storms. Earth Planets Space 59(5): 407–419. https://doi.org/10.1186/BF03352702. [CrossRef] [Google Scholar]
- Yin F, Lühr H, Park J, Wang L. 2019. Comprehensive analysis of the magnetic signatures of small-scale traveling ionospheric disturbances, as observed by swarm. J Geophys Res Space Phys 124(12): 10794–10815. https://doi.org/10.1029/2019JA027523. [CrossRef] [Google Scholar]
- Zakharenkova I, Astafyeva E, Cherniak I. 2016. GPS and GLONASS observations of large-scale traveling ionospheric disturbances during the 2015 St. Patrick’s Day storm. J Geophys Res Space Phys 121: 12138–12156. https://doi.org/10.1002/2016JA023332. [CrossRef] [Google Scholar]
- Zhang SR, Coster AJ, Erickson PJ, Goncharenko LP, Rideout W, Vierinen J. 2019. Traveling Ionospheric Disturbances and Ionospheric Perturbations Associated With Solar Flares in September 2017. J Geophys Res Space Phys 124: 5894–5917. https://doi.org/10.1029/2019JA026585. [CrossRef] [Google Scholar]
- Zhang SR, Erickson PJ, Vierinen J, Aa E, Rideout W, Coster AJ, Goncharenko LP. 2021. Conjugate ionospheric perturbation during the 2017 solar eclipse. J Geophys Res Space Phys 126: e2020JA028531. https://doi.org/10.1029/2020JA028531. [CrossRef] [Google Scholar]
- Zhang X, Tang L. 2015. Detection of ionospheric disturbances driven by the 2014 Chile tsunami using GPS total electron content in New Zealand. J Geophys Res Space Phys 120: 7918–7925. https://doi.org/10.1002/2014JA020879. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.