Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
|
|
---|---|---|
Article Number | 33 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/swsc/2024029 | |
Published online | 13 November 2024 |
- Alexander RA. 1990. A note on averaging correlations. Bull Psychon Soc 28(4): 335–336. https://doi.org/10.3758/bf03334037. [CrossRef] [Google Scholar]
- Araujo-Pradere EA, Fuller-Rowell TJ, Codrescu MV. 2002. STORM: An empirical storm-time ionospheric correction model 1. Model description. Radio Sci. 37(5): 1070. https://doi.org/10.1029/2001RS002467. [Google Scholar]
- Birch MJ, Hargreaves JK. 2020. Quasi-periodic ripples in high latitude electron content, the geomagnetic field, and the solar wind. Sci Rep 10(1): 1313. https://doi.org/10.1038/s41598-019-57201-4. [CrossRef] [Google Scholar]
- Borries C, Berdermann J, Jakowski N, Wilken V. 2015. Ionospheric storms – A challenge for empirical forecast of the total electron content. J Geophys Res Space Phys 120(4): 3175–3186. https://doi.org/10.1002/2015JA020988. [CrossRef] [Google Scholar]
- Brekke A. 1982. Joule heating and particle precipitation. Adv Space Res 2(10): 45–53. Proceedings of the Topical Meeting of the COSPAR Interdisciplinary Scientific Commission C of the COSPAR Twenty-fourth Plenary Meeting, https://doi.org/10.1016/0273-1177(82)90362-3. [CrossRef] [Google Scholar]
- Burke WJ, Gentile LC, Huang CY. 2007. Penetration electric fields driving main phase Dst. J Geophys Res Space Phys 112(A7): A07208. https://doi.org/10.1029/2006ja012137. [CrossRef] [Google Scholar]
- Cai L, Aikio AT, Nygrén T. 2014. Solar wind effect on Joule heating in the high-latitude ionosphere. J Geophys Res Space Phys 119(12): 10440–10455. https://doi.org/10.1002/2014ja020269. [Google Scholar]
- Cai X, Burns AG, Wang W, Qian L, Pedatella N, et al. 2021. Variations in thermosphere composition and ionosphere total electron content under “geomagnetically quiet” conditions at solar-minimum. Geophys Res Lett 48(11): e2021GL093300. https://doi.org/10.1029/2021gl093300. [CrossRef] [Google Scholar]
- Coxon JC, Milan SE, Carter JA, Clausen LBN, Anderson BJ, Korth H. 2016. Seasonal and diurnal variations in AMPERE observations of the Birkeland currents compared to modeled results. J Geophys Res Space Phys 121(5): 4027–4040. https://doi.org/10.1002/2015ja022050. [CrossRef] [Google Scholar]
- Crowley G, Reynolds A, Thayer JP, Lei J, Paxton LJ, Christensen AB, Zhang Y, Meier RR, Strickland DJ. 2008. Periodic modulations in thermospheric composition by solar wind high speed streams. Geophys Res Lett 35(21): L21106. https://doi.org/10.1029/2008gl035745. [CrossRef] [Google Scholar]
- Dungey JW. 1961. Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6(2): 47–48. https://doi.org/10.1103/physrevlett.6.47. [CrossRef] [Google Scholar]
- Ellahouny NM, Aikio AT, Vanhamäki H, Virtanen II, Cai L, , et al. 2024. EISCAT observations of depleted high-latitude F-region during an HSS/SIR-driven magnetic storm. J Geophys Res Space Phys 129, e2024JA032910. https://doi.org/10.1029/2024JA032910. [CrossRef] [Google Scholar]
- Floyd L, Newmark J, Cook J, Herring L, McMullin D. 2005. Solar EUV and UV spectral irradiances and solar indices. J Atmos Sol Terr Phys 67(1–2): 3–15. https://doi.org/10.1016/j.jastp.2004.07.013. [CrossRef] [Google Scholar]
- Foster JC, Coster AJ, Erickson PJ, Holt JM, Lind FD, et al. 2005. Multiradar observations of the polar tongue of ionization. J Geophys Res Space Phys 110(A9): A09S31. https://doi.org/10.1029/2004JA010928. [CrossRef] [Google Scholar]
- Foster JC, St.-Maurice J-P, Abreu VJ. 1983. Joule heating at high latitudes. J Geophys Res Space Phys 88(A6): 4885–4897. https://doi.org/10.1029/ja088ia06p04885. [CrossRef] [Google Scholar]
- Fuller-Rowell TJ, Codrescu MV, Rishbeth H, Moffett RJ, Quegan S. 1996. On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res Space Phys 101(A2): 2343–2353. https://doi.org/10.1029/95JA01614. [CrossRef] [Google Scholar]
- Girish T, Jayachandran B, Shamsudeen S. 1997. Influence of solar wind on the TEC variations at mid and sub-auroral latitudes during sunspot maximum. Acta Geod Geoph Hung 32: 287–292. https://doi.org/10.1007/BF03325499. [CrossRef] [Google Scholar]
- Grandin M, Aikio AT, Kozlovsky A, Ulich T, Raita T. 2015. Effects of solar wind high-speed streams on the high-latitude ionosphere: superposed epoch study. J Geophys Res Space Phys 120(12): 10669–10687. https://doi.org/10.1002/2015ja021785. [CrossRef] [Google Scholar]
- Heelis RA, Maute A. 2020. Challenges to understanding the earth’s ionosphere and thermosphere. J Geophys Res Space Phys 125(7): e2019JA027497. https://doi.org/10.1029/2019ja027497. [CrossRef] [Google Scholar]
- Hubert B, Gérard JC, Fuselier SA, Mende SB. 2003. Observation of dayside subauroral proton flashes with the IMAGE-FUV imagers. Geophys Res Lett 30(3): 1145. https://doi.org/10.1029/2002gl016464. [CrossRef] [Google Scholar]
- Jakowski N, Hocke K, Schlüter S, Heise S. 1998. Space weather effects detected by GPS based TEC monitoring. In: Workshop on Space Weather, Noordwijk, 11–13 November, vol. ESA WPP-155, ESTEC (Ed.), ESA ESTEC, Noordwijk, pp. 241–244. Available at https://swe.ssa.esa.int/TECEES/spweather/workshops/proceedings_w1/POSTER1/jakowski1.pdf. [Google Scholar]
- Jakowski N, Hoque MM, Mielich J, Hall C. 2017. Equivalent slab thickness of the ionosphere over Europe as an indicator of long-term temperature changes in the thermosphere. J Atmos Sol Terr Phys 163: 91–102. https://doi.org/10.1016/j.jastp.2017.04.008. [CrossRef] [Google Scholar]
- Jakowski N, Jungstand A, Schlegel K, Kohl H, Rinnert K. 1992. The ionospheric response to perturbation electric fields during the onset phase of geomagnetic storms. Can J Phys 70(7): 575–581. https://doi.org/10.1139/p92-093. [CrossRef] [Google Scholar]
- Juusola L, Kauristie K, Amm O, Ritter P. 2009. Statistical dependence of auroral ionospheric currents on solar wind and geomagnetic parameters from 5 years of CHAMP satellite data. Ann Geophys 27(3): 1005–1017. https://doi.org/10.5194/angeo-27-1005-2009. [CrossRef] [Google Scholar]
- Kan JR, Lee LC. 1979. Energy coupling function and solar wind-magnetosphere dynamo. Geophys Res Lett 6(7): 577–580. https://doi.org/10.1029/gl006i007p00577. [Google Scholar]
- Killeen TL, Won Y-I, Niciejewski RJ, Burns AG. 1995. Upper thermosphere winds and temperatures in the geomagnetic polar cap: Solar cycle, geomagnetic activity, and interplanetary magnetic field dependencies. J Geophys Res Space Phys 100(A11): 21327–21342. https://doi.org/10.1029/95ja01208. [CrossRef] [Google Scholar]
- Laundal KM, Cnossen I, Milan SE, Haaland SE, Coxon J, Pedatella NM, Förster M, Reistad JP. 2016. North–south asymmetries in earth’s magnetic field: effects on high-latitude geospace. Space Sci Rev 206(1–4): 225–257. https://doi.org/10.1007/s11214-016-0273-0. [Google Scholar]
- Lean JL, Meier RR, Picone JM, Emmert JT. 2011. Ionospheric total electron content: global and hemispheric climatology. J Geophys Res Space Phys 116(A10): A10318. https://doi.org/10.1029/2011JA016567. [Google Scholar]
- Lei J, Thayer J, Forbes JM, Wu Q, She C, Wan W, Wang W. 2008a. Ionosphere response to solar wind high-speed streams. Geophys Res Lett 35: L19105. https://doi.org/10.1029/2008GL035208. [Google Scholar]
- Lei J, Thayer JP, Forbes JM, Sutton EK, Nerem RS. 2008b. Rotating solar coronal holes and periodic modulation of the upper atmosphere. Geophys Res Lett 35(10): L10109. https://doi.org/10.1029/2008gl033875. [Google Scholar]
- Liou K, Newell PT, Meng C-I. 2001. Seasonal effects on auroral particle acceleration and precipitation. J Geophys Res Space Phys 106(A4): 5531–5542. https://doi.org/10.1029/1999ja000391. [CrossRef] [Google Scholar]
- Liou K, Wu C, Lepping RP, Newell PT, Meng C. 2002. Midday sub-auroral patches (MSPs) associated with interplanetary shocks. Geophys Res Lett 29(16): 1771. https://doi.org/10.1029/2001gl014182. [Google Scholar]
- Liu H, Schlegel K, Ma S-Y. 2000. Combined ESR and EISCAT observations of the dayside polar cap and auroral oval during the May 15, 1997 storm. Ann Geophys 18(9): 1067–1072. https://doi.org/10.1007/s00585-000-1067-x. [CrossRef] [Google Scholar]
- Liu J, Liu L, Zhao B, Lei J, Thayer JP, McPherron RL. 2012. Superposed epoch analyses of thermospheric response to CIRs: solar cycle and seasonal dependencies. J Geophys Res Space Phys 117(A9): A00L10. https://doi.org/10.1029/2011ja017315. [Google Scholar]
- Lockwood M, Cowley SWH, Freeman MP. 1990. The excitation of plasma convection in the high-latitude ionosphere. J Geophys Res 95(A6): 7961. https://doi.org/10.1029/ja095ia06p07961. [CrossRef] [Google Scholar]
- Lockwood M, Farmer A, Opgenoorth H, Crothers S. 1984. EISCAT observations of plasma convection and the high-latitude, winter F-region during substormactivity. J Atmos Terr Phys 46(6–7): 489–499. https://doi.org/10.1016/0021-9169(84)90067-9. [CrossRef] [Google Scholar]
- Lu G, Richmond AD, Lühr H, Paxton L. 2016. High-latitude energy input and its impact on the thermosphere. J Geophys Res Space Phys 121(7): 7108–7124. https://doi.org/10.1002/2015ja022294. [CrossRef] [Google Scholar]
- Ma SY, Cai HT, Liu HX, Schlegel K, Lu G. 2002. Positive storm effects in the dayside polar ionospheric F-region observed by EISCAT and ESR during the magnetic storm of 15 May 1997. Ann Geophys 20(9): 1377–1384. https://doi.org/10.5194/angeo-20-1377-2002. [CrossRef] [Google Scholar]
- Mendillo M. 2006. Storms in the ionosphere: Patterns and processes for total electron content. Rev Geophys 44(4): RG4001. https://doi.org/10.1029/2005RG000193. [CrossRef] [Google Scholar]
- Milan SE, Clausen LBN, Coxon JC, Carter JA, Walach M-T, et al. 2017. Overview of solar wind–magnetosphere–ionosphere–atmosphere coupling and the generation of magnetospheric currents. Space Sci Rev 206(1): 547–573. https://doi.org/10.1007/s11214-017-0333-0. [CrossRef] [Google Scholar]
- Miro G, de la Morena BA, Jakowski N. 1999. Equivalent slab thickness of the ionosphere in middle latitudes based on TEC/foF2 observations over El Arenosillo. In: COST 251/Workshop on Procedures and Testing of the Models for Ionospheric Telecommunications Application, Hanbaba R, de la Morena Carretero BA (Eds.), Universidad de Huelva, Huelva, pp. 87–92. Available at http://digital.casalini.it/9788418984594. [Google Scholar]
- Ogawa Y, Buchert SC, Sakurai A, Nozawa S, Fujii R. 2010. Solar activity dependence of ion upflow in the polar ionosphere observed with the European Incoherent Scatter (EISCAT) Tromsø UHF radar. J Geophys Res Space Phys 115(A7): A07310. https://doi.org/10.1029/2009ja014766. [CrossRef] [Google Scholar]
- Oyama S-i, Aikio A, Sakanoi T, Hosokawa K, Vanhamäki H, et al. 2023. Geomagnetic activity dependence and dawn-dusk asymmetry of thermospheric winds from 9-year measurements with a Fabry-Perot interferometer in Tromsø. Norway. Earth Planet Space 75(1): 70. https://doi.org/10.1186/s40623-023-01829-0. [CrossRef] [Google Scholar]
- Palmroth M. 2004. Role of solar wind dynamic pressure in driving ionospheric Joule heating. J Geophys Res 109(A11): A11302. https://doi.org/10.1029/2004ja010529. [Google Scholar]
- Pedatella NM, Forbes JM. 2011. Electrodynamic response of the ionosphere to high-speed solar wind streams. J Geophys Res Space Phys 116(A12): A12310. https://doi.org/10.1029/2011ja017050. [CrossRef] [Google Scholar]
- Pedatella NM, Lei J, Thayer JP, Forbes JM. 2010. Ionosphere response to recurrent geomagnetic activity: local time dependency. J Geophys Res Space Phys 115(A2): A02301. https://doi.org/10.1029/2009JA014712. [Google Scholar]
- Prölss G, Roemer M, Slowey J. 1988. Dissipation of solar wind energy in the Earth’ supper atmosphere: the geomagnetic activity effect. Adv Space Res 8(5): 215–261. https://doi.org/10.1016/0273-1177(88)90043-9. [CrossRef] [Google Scholar]
- Rees MH, Emery BA, Roble RG, Stamnes K. 1983. Neutral and ion gas heating by auroral electron precipitation. J Geophys Res Space Phys 88(A8): 6289–6300. https://doi.org/10.1029/JA088iA08p06289. [CrossRef] [Google Scholar]
- Rentz S. 2009. The upper atmospheric fountain effect in the polar cusp region, PhD Thesis, Technical University Carolo-Wilhelmina zu Braunschweig. https://doi.org/10.2312/GFZ.B103-09050. [Google Scholar]
- Ritter P, Lühr H, Maus S, Viljanen A. 2004. High-latitude ionospheric currents during very quiet times: their characteristics and predictability. Ann Geophys 22(6): 2001–2014. https://doi.org/10.5194/angeo-22-2001-2004. [CrossRef] [Google Scholar]
- Rodger AS, Wells GD, Moffett RJ, Bailey GJ. 2001. The variability of Joule heating, and its effects on the ionosphere and thermosphere. Ann Geophys 19(7): 773–781. https://doi.org/10.5194/angeo-19-773-2001. [CrossRef] [Google Scholar]
- Schunk R, Zhu L. 2008. Response of the ionosphere–thermosphere system to magnetospheric processes. J Atmos Sol Terr Phys 70(18): 2358–2373. https://doi.org/10.1016/j.jastp.2008.07.003. [CrossRef] [Google Scholar]
- Shirochkov A, Makarova L, Maurits S, Schlegel K. 1990. Response of the auroral ionosphere to solar wind parameter variations. Ann Geophys 8(5): 353–356. [Google Scholar]
- Su Y-J, Caton RG, Horwitz JL, Richards PG. 1999. Systematic modeling of soft-electron precipitation effects on high-latitude F region and topside ionospheric upflows. J Geophys Res Space Phys 104(A1): 153–163. https://doi.org/10.1029/1998JA900068. [CrossRef] [Google Scholar]
- Tapping KF. 2013. The 10.7 cm solar radio flux (F10.7). Space Weather 11(7): 394–406. https://doi.org/10.1002/swe.20064. [CrossRef] [Google Scholar]
- Tesfaw HW, Virtanen II, Aikio AT. 2023. Characteristics of auroral electron precipitation at geomagnetic latitude 67 over Tromsø. J Geophys Res Space Phys 128(7): e2023JA031382. https://doi.org/10.1029/2023ja031382. [CrossRef] [Google Scholar]
- Thayer J, Lei J, Forbes J, Sutton E, Nerem R. 2008. Thermospheric density oscillations due to periodic solar wind highspeed streams. J Geophys Res Space Phys 113(6): A06307. https://doi.org/10.1029/2008JA013190. [CrossRef] [Google Scholar]
- Tsagouri I, Belehaki A. 2008. An upgrade of the solar-wind-driven empirical model for the middle latitude ionospheric storm-time response. J Atmos Sol Terr Phys 70(16): 2061–2076. https://doi.org/10.1016/j.jastp.2008.09.010. [CrossRef] [Google Scholar]
- Tsurutani B, Mannucci A, Iijima B, Abdu MA, Sobral JHA, et al. 2004. Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. J Geophys Res Space Phys 109(A8): A08302. https://doi.org/10.1029/2003JA010342. [CrossRef] [Google Scholar]
- Vaishnav R, Jacobi C, Berdermann J. 2019. Long-term trends in the ionospheric response to solar EUV variations. Ann Geophys 37: 1141–1159. https://doi.org/10.5194/angeo-37-1141-2019. [CrossRef] [Google Scholar]
- Weimer DR. 2001. Maps of ionospheric field-aligned currents as a function of the interplanetary magnetic field derived from dynamics Explorer 2 data. J Geophys Res Space Phys 106(A7): 12889–12902. https://doi.org/10.1029/2000ja000295. [CrossRef] [Google Scholar]
- Wilson GR, Weimer DR, Wise JO, Marcos FA. 2006. Response of the thermosphere to Joule heating and particle precipitation. J Geophys Res Space Phys 111(A10): A10314. https://doi.org/10.1029/2005JA011274. [Google Scholar]
- Workayehu AB, Vanhamäki H, Aikio AT. 2020. Seasonal effect on hemispheric asymmetry in ionospheric horizontal and field-aligned currents. J Geophys Res Space Phys 125(10): e2020JA028051. https://doi.org/10.1029/2020ja028051. [CrossRef] [Google Scholar]
- Zhang B, Lotko W, Brambles O, Wiltberger M, Wang W, Schmitt P, Lyon J. 2012. Enhancement of thermospheric mass density by soft electron precipitation. Geophys Res Lett 39(20): L20102. https://doi.org/10.1029/2012GL053519. [Google Scholar]
- Zhang Q-H, Lockwood M, Foster JC, Zhang S-R, Zhang B-C, McCrea IW, Moen J, Lester M, Ruohoniemi JM. 2015. Direct observations of the full Dungey convection cycle in the polar ionosphere for southward interplanetary magnetic field conditions. J Geophys Res Space Phys 120(6): 4519–4530. https://doi.org/10.1002/2015ja021172. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.