Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
|
|
---|---|---|
Article Number | 23 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/swsc/2024022 | |
Published online | 26 August 2024 |
- Anderson J. 2017. Fundamentals of aerodynamics. McGraw-Hill series in aeronautical and aerospace engineering, McGraw-Hill Education, UK. ISBN 9781259251344. [Google Scholar]
- Bag T, Rout D, Ogawa Y, Singh V. 2023. Distinctive response of thermospheric cooling to ICME and CIR-driven geomagnetic storms. Front Astron Space Sci 10. https://doi.org/10.3389/fspas.2023.1107605. [Google Scholar]
- Baruah Y, Roy S, Sinha S, Palmerio E, Pal S, Oliveira DM, Nandy D. 2024. The loss of Starlink satellites in February 2022: how moderate geomagnetic storms can adversely affect assets in low-Earth orbit. Space Weather 22(4). https://doi.org/10.1029/2023SW003716. [CrossRef] [Google Scholar]
- Bettadpur S. 2012. GRACE product specification document, revision 4.6, center for space research. Technical Report GRACE, The University of Texas at Austin. [Google Scholar]
- Bolduc L. 2002. GIC observations and studies in the Hydro-Québec power system. J Atmos Sol-Terrest Phys 64(16): 1793–1802. Space Weather Effects on Technological Systems. https://doi.org/10.1016/S1364-6826(02)00128-1. [CrossRef] [Google Scholar]
- Boteler DH. 2019. A 21st century view of the March 1989 magnetic storm. Space Weather 17(10): 1427–1441. https://doi.org/10.1029/2019SW002278. [CrossRef] [Google Scholar]
- Bowman B, Tobiska WK, Marcos F, Huang C, Lin C, Burke W. 2008. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. https://doi.org/10.2514/6.2008-6438. [Google Scholar]
- Bruinsma S, Biancale R. 2003. Total densities derived from accelerometer data. J Spacecraft Rockets 40(2): 230–236. https://doi.org/10.2514/2.3937. [CrossRef] [Google Scholar]
- Bruinsma S, Fedrizzi M, Yue J, Siemes C, Lemmens S. 2021. Charting satellite courses in a crowded thermosphere. Eos 102. https://doi.org/10.1029/2021EO153475. [CrossRef] [Google Scholar]
- Bruinsma S, Forbes JM, Nerem RS, Zhang X. 2006. Thermosphere density response to the 20–21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data. J Geophys Res Space Phys 111(A6). https://doi.org/10.1029/2005JA011284. [CrossRef] [Google Scholar]
- Burt J, Smith B. 2012. Deep space climate observatory: the DSCOVR mission. In: 2012 IEEE aerospace conference. https://doi.org/10.1109/AERO.2012.6187025. [Google Scholar]
- Callejon Cantero M. 2023. Assimilation of Swarm C atmospheric density observations into NRLMSISE-00. Master thesis, Delft University of Technology. http://resolver.tudelft.nl/uuid:f472201e-0e32-4b9e-8aa3-04521908396a. [Google Scholar]
- Chen G-M, Xu J, Wang W, Burns AG. 2014. A comparison of the effects of CIR- and CME-induced geomagnetic activity on thermospheric densities and spacecraft orbits: statistical studies. J Geophys Res Space Phys 119(9): 7928–7939. https://doi.org/10.1002/2014JA019831. [CrossRef] [Google Scholar]
- Chen G-M, Xu J, Wang W, Lei J, Burns AG. 2012. A comparison of the effects of CIR- and CME-induced geomagnetic activity on thermospheric densities and spacecraft orbits: case studies. J Geophys Res Space Phys 117(A8). https://doi.org/10.1029/2012JA017782. [Google Scholar]
- Dang T, Li X, Luo B, Li R, Zhang B, Pham K, Ren D, Chen X, Lei J, Wang Y. 2022. Unveiling the space weather during the Starlink satellites destruction event on 4 February 2022. Space Weather 20(8). https://doi.org/10.1029/2022SW003152. [CrossRef] [Google Scholar]
- Doornbos E. 2012. Thermospheric density and wind determination from satellite dynamics, Springer, Berlin, Heidelberg. ISBN 978-3-642-25128-3. https://doi.org/10.1007/978-3-642-25129-0. [CrossRef] [Google Scholar]
- Drob DP, Emmert JT, Meriwether JW, Makela JJ, Doornbos E, et al. 2015. An update to the Horizontal Wind Model (HWM): the quiet time thermosphere. Earth Space Sci 2(7): 301–319. https://doi.org/10.1002/2014EA000089. [CrossRef] [Google Scholar]
- Emmert JT. 2015. Thermospheric mass density: a review. Adv Space Res 56(5): 773–824. https://doi.org/10.1016/j.asr.2015.05.038. [CrossRef] [Google Scholar]
- Fang T-W, Kubaryk A, Goldstein D, Li Z, Fuller-Rowell T, Millward G, Singer HJ, Steenburgh R, Westerman S, Babcock E. 2022. Space weather environment during the SpaceX Starlink satellite loss in February 2022. Space Weather 20(11). https://doi.org/10.1029/2022SW003193. [Google Scholar]
- Fernandez M. 2019. SENTINEL-1 properties for GPS POD, v1.4. Technical report GMV-GMESPOD-TN-0025, GMV solutions. https://sentinels.copernicus.eu/documents/247904/3455957/Sentinel-1-properties-for-GPS-POD. [Google Scholar]
- Forbes JM. 2007. Dynamics of the thermosphere. J Meteorol Soc Jpn Ser II 85B: 193–213. https://doi.org/10.2151/jmsj.85B.193. [CrossRef] [Google Scholar]
- Hackel S, Montenbruck O, Steigenberger P, Balss U, Gisinger C, Eineder M. 2017. Model improvements and validation of TerraSAR-X precise orbit determination. J Geodesy 91(5): 547–562. https://doi.org/10.1007/s00190-016-0982-x. [CrossRef] [Google Scholar]
- Hapgood M, Angling MJ, Attrill G, Bisi M, Cannon PS, et al. 2021. Development of space weather reasonable worst-case scenarios for the UK national risk assessment. Space Weather 19(4). https://doi.org/10.1029/2020SW002593. [CrossRef] [Google Scholar]
- Hładczuk N, van den IJssel J, Kodikara T, Siemes C, Visser P. 2024. GRACE-FO radiation pressure modelling for accurate density and crosswind retrieval. Adv Space Res 73(5): 2355–2373. https://doi.org/10.1016/j.asr.2023.12.059. [CrossRef] [Google Scholar]
- Kamide Y, Yokoyama N, Gonzalez W, Tsurutani BT, Daglis IA, Brekke A, Masuda S. 1998. Two-step development of geomagnetic storms. J Geophys Res Space Phys 103(A4): 6917–6921. https://doi.org/10.1029/97JA03337. [CrossRef] [Google Scholar]
- Kataoka R, Shiota D, Fujiwara H, Jin H, Tao C, Shinagawa H, Miyoshi Y. 2022. Unexpected space weather causing the reentry of 38 Starlink satellites in February 2022. J Space Weather Space Clim 12(2022): 41. https://doi.org/10.1051/swsc/2022034. [CrossRef] [EDP Sciences] [Google Scholar]
- Knipp D, Pette D, Kilcommons L, Isaacs T, Cruz A, Mlynczak M, Hunt L, Lin C. 2017. Thermospheric nitric oxide response to shock-led storms. Space Weather 15(2). [Google Scholar]
- Knipp DJ, Tobiska WK, Emery BA. 2004. Direct and indirect thermospheric heating sources for solar cycles 21–23. Sol Phys 224(1–2): 495–505. https://doi.org/10.1007/s11207-005-6393-4. [Google Scholar]
- Kornfeld RP, Arnold BW, Gross MA, Dahya NT, Klipstein WM, Gath PF, Bettadpur S. 2019. GRACE-FO: the gravity recovery and climate experiment follow-on mission. J Spacecraft Rockets 56(3): 931–953. https://doi.org/10.2514/1.A34326. [CrossRef] [Google Scholar]
- Krauss S, Behzadpour S, Temmer M, Lhotka C. 2020. Exploring thermospheric variations triggered by severe geomagnetic storm on 26 August 2018 using GRACE follow-on data. J Geophys Res Space Phys 125(5). https://doi.org/10.1029/2019JA027731. [CrossRef] [Google Scholar]
- Krauss S, Drescher L, Temmer M, Suesser-Rechberger B, Kroisz S. 2023. Database for ESA Service Satellite Orbit DecAy (SODA). Dataset published on TU GRAZ Repository Bibliothek und Archiv. https://doi.org/10.3217/c53m9-rk057. [Google Scholar]
- Krauss S, Temmer M, Vennerstrom S. 2018. Multiple satellite analysis of the Earth’s thermosphere and interplanetary magnetic field variations due to ICME/CIR events during 2003–2015. J Geophys Res Space Phys 123(10): 8884–8894. https://doi.org/10.1029/2018JA025778. [CrossRef] [Google Scholar]
- Krauss S, Temmer M, Veronig A, Baur O, Lammer H. 2015. Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: statistical results. J Geophys Res Space Phys 120(10): 8848–8860. https://doi.org/10.1002/2015JA021702. [CrossRef] [Google Scholar]
- Kroisz S. 2023. Analyzing the impact of interactive ICMEs on satellite orbit decay from 2002 to 2022. Master thesis, Graz University of Technology and University of Graz. https://doi.org/10.3217/capb7-3w425. [Google Scholar]
- Larrodera C, Cid C. 2020. The distribution function of the average iron charge state at 1 AU: from a bimodal wind to ICME identification. Sol Phys 295(11). https://doi.org/10.1007/s11207-020-01727-8. [CrossRef] [Google Scholar]
- Larrodera C, Temmer M. 2024. Evolution of coronal mass ejections with and without sheaths from the inner to the outer heliosphere: statistical investigation for 1975 to 2022. A&A 685: A89. https://doi.org/10.1051/0004-6361/202348641. [CrossRef] [EDP Sciences] [Google Scholar]
- Li R, Lei J. 2021. The determination of satellite orbital decay from POD data during geomagnetic storms. Space Weather 19(4). https://doi.org/10.1029/2020SW002664. [Google Scholar]
- Liu H, Lühr H. 2005. Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations. J Geophys Res Space Phys 110(A9). https://doi.org/10.1029/2004JA010908. [Google Scholar]
- Lugaz N, Farrugia CJ, Smith CW, Paulson K. 2015. Shocks inside CMEs: a survey of properties from 1997 to 2006. J Geophys Res (Space Phys) 120(4): 2409–2427. https://doi.org/10.1002/2014JA020848, 1503.04141. [CrossRef] [Google Scholar]
- Lugaz N, Temmer M, Wang Y, Farrugia CJ. 2017. The interaction of successive coronal mass ejections: a review. Sol Phys 292(4). https://doi.org/10.1007/s11207-017-1091-6, 1612.02398. [CrossRef] [Google Scholar]
- Mayer-Gürr T, Behzadpour S, Eicker A, Ellmer M, Koch B, et al. 2021. GROOPS: a software toolkit for gravity field recovery and GNSS processing. Comput Geosci 155: 104864. https://doi.org/10.1016/j.cageo.2021.104864. [CrossRef] [Google Scholar]
- McIntosh SW, Leamon RJ, Egeland R. 2023. Deciphering solar magnetic activity: The (solar) hale cycle terminator of 2021. Front Astron Space Sci 10. https://doi.org/10.3389/fspas.2023.1050523. [CrossRef] [Google Scholar]
- Menvielle M, Iyemori T, Marchaudon A, Nosé M. Geomagnetic observations and models, chap. Geomagnetic indices, 183–228. Springer Netherlands, Dordrecht, 2011. ISBN 978-90-481-9858-0. https://doi.org/10.1007/978-90-481-9858-0. [Google Scholar]
- Mlynczak MG, Hunt LA, Mertens CJ, Thomas B, Russell III JM, Woods T, Earl Thompson R, Gordley LL. 2014. Influence of solar variability on the infrared radiative cooling of the thermosphere from 2002 to 2014. Geophys Res Lett 41(7): 2508–2513. https://doi.org/10.1002/2014GL059556. [CrossRef] [Google Scholar]
- Möstl C, Weiss AJ, Bailey RL, Reiss MA, Amerstorfer T, Hinterreiter J, Bauer M, McIntosh SW, Lugaz N, Stansby D. 2020. Prediction of the in situ coronal mass ejection rate for solar cycle 25: implications for parker solar probe in situ observations. Astrophys J 903(2). https://doi.org/10.3847/1538-4357/abb9a1. [Google Scholar]
- Nagovitsyn YA, Ivanov VG. 2023. Solar cycle pairing and prediction of cycle 25. Sol Phys 298(3). https://doi.org/10.1007/s11207-023-02121-w. [Google Scholar]
- Nieves-Chinchilla T, Vourlidas A, Raymond JC, Linton MG, Al-haddad N, Savani NP, Szabo A, Hidalgo MA. 2018. Understanding the internal magnetic field configurations of ICMEs using more than 20 years of wind observations. Sol Phys 293(2). https://doi.org/10.1007/s11207-018-1247-z. [CrossRef] [Google Scholar]
- Oliveira DM. 2023. Interplanetary shock data base. Front Astron Space Sci 10. https://doi.org/10.3389/fspas.2023.1240323. [Google Scholar]
- Oliveira DM, Zesta E. 2019. Satellite orbital drag during magnetic storms. Space Weather 17(11): 1510–1533.https://doi.org/10.1029/2019SW002287. [CrossRef] [Google Scholar]
- Oliveira DM, Zesta E, Mehta PM, Licata RJ, Pilinski MD, Tobiska WK, Hayakawa H. 2021. The current state and future directions of modeling thermosphere density enhancements during extreme magnetic storms. Front Astron Space Sci 8. https://doi.org/10.3389/fspas.2021.764144. [CrossRef] [Google Scholar]
- Olsen N, Friis-Christensen E, Floberghagen R, Alken P, Beggan CD, et al. 2013. The Swarm satellite constellation application and research facility (SCARF) and Swarm data products. Earth Planets Space 65(11):1189–1200. https://doi.org/10.5047/eps.2013.07.001. [CrossRef] [Google Scholar]
- Piersanti M, Del Moro D, Parmentier A, Martucci M, Palma F, et al. 2022. On the magnetosphere-ionosphere coupling during the May 2021 geomagnetic storm. Space Weather 20(6). https://doi.org/10.1029/2021SW003016. [CrossRef] [Google Scholar]
- Pulkkinen T. 2007. Space weather: terrestrial perspective. Living Rev Sol Phys 4(1). https://doi.org/10.12942/lrsp-2007-1. [CrossRef] [Google Scholar]
- Reigber C, Lühr H, Schwintzer P. 2002. CHAMP mission status. Adv Space Res 30. https://doi.org/10.1016/S0273-1177(02)00276-4. [Google Scholar]
- Richardson IG, Cane HV. 2013. Solar wind drivers of geomagnetic storms over more than four solar cycles. AIP Conf Proc 1539(1). https://doi.org/10.1063/1.4811075. [Google Scholar]
- Scolini C, Chané E, Temmer M, Kilpua EKJ, Dissauer K, et al. 2020. CME-CME interactions as sources of CME geoeffectiveness: the formation of the complex ejecta and intense geomagnetic storm in 2017 early September. Astroph J Suppl Ser 247(1): 21. https://doi.org/10.3847/1538-4365/ab6216, 1911.10817. [CrossRef] [Google Scholar]
- Siemes C. 2019. Swarm satellite thermo-optical properties and external geometry, European Space Agency. Technical report v2.0 ESA-EOPG-MOM-MO-15. https://earth.esa.int/eogateway/documents/20142/37627/swarm-thermo-optical-properties-and-external-geometry.pdf. [Google Scholar]
- Siemes C, Borries C, Bruinsma S, Fernandez-Gomez I, Hładczuk N, v. den IJssel J, Kodikara T, Vielberg K, Visser P. 2023. New thermosphere neutral mass density and crosswind datasets from CHAMP, GRACE, and GRACE-FO. J Space Weather Space Clim 13. https://doi.org/10.1051/swsc/2023014. [Google Scholar]
- Stone EC, Frandsen AM, Mewaldt RA, Christian ER, Margolies D, Ormes JF, Snow F. 1998. The advanced composition explorer. Space Sci Rev 86(1):1–22.https://doi.org/10.1023/A:1005082526237. [CrossRef] [Google Scholar]
- Suesser-Rechberger B, Krauss S, Strasser S, Mayer-Guerr T. 2022. Improved precise kinematic LEO orbits based on the raw observation approach. Adv Space Res 69(10): 3559–3570. https://doi.org/10.1016/j.asr.2022.03.014. [CrossRef] [Google Scholar]
- Sugiura M. 1964. Hourly values of equatorial Dst for the IGY. Ann Int Geophys Yr 35. https://www.osti.gov/biblio/4554034. [Google Scholar]
- Sugiura M, Kamei T, Berthelier A, Menvielle M, I. U. of Geodesy, Geophysics, I. A. of Geomagnetism, Aeronomy, I. C. of Scientific Unions. 1991. Equatorial Dst index, 1957–1986. ISGI Publications Office, Saint-Maur-Des-Fosses, France. [Google Scholar]
- Sutton E. 2008. Effects of solar disturbances on the thermosphere densities and winds from CHAMP and GRACE satellite accelerometer data. Phd thesis, University of Colorado at Boulder. [Google Scholar]
- Sutton EK, Forbes JM, Nerem RS. 2005. Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. J Geophys Res (Space Phys) 110(A9). https://doi.org/10.1029/2004JA010985. [Google Scholar]
- Tapley BD, Bettadpur S, Watkins M, Reigber C. 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophys Res Lett 31(9). https://doi.org/10.1029/2004GL019920. [CrossRef] [Google Scholar]
- Temmer M. 2021. Space weather: the solar perspective. Living Rev Sol Phys 18(1). https://doi.org/10.1007/s41116-021-00030-3. [CrossRef] [Google Scholar]
- Temmer M, Bothmer V. 2022. Characteristics and evolution of sheath and leading edge structures of interplanetary coronal mass ejections in the inner heliosphere based on Helios and Parker Solar Probe observations. A&A 665. https://doi.org/10.1051/0004-6361/202243291. [Google Scholar]
- van den IJssel J, Doornbos E, Iorfida E, March G, Siemes C, Montenbruck O. 2020. Thermosphere densities derived from Swarm GPS observations. Adv Space Res 65(7):1758–1771.https://doi.org/10.1016/j.asr.2020.01.004. [CrossRef] [Google Scholar]
- Wen HY, Kruizinga G, Paik M, Landerer F, Bertiger W, Sakumura C, Bandikova T, Mccullough C. 2019. Gravity recovery and climate experiment follow-on (GRACE-FO) level-1 data product user handbook. JPL D-56935 (URS270772) 11. https://archive.podaac.earthdata.nasa.gov/podaac-ops-cumulus-docs/gracefo/open/docs/GRACE-FO_L1_Handbook.pdf. [Google Scholar]
- Wöske F, Kato T, Rievers B, List M. 2019. GRACE accelerometer calibration by high precision non-gravitational force modeling. Adv Space Res 63(3): 1318–1335. https://doi.org/10.1016/j.asr.2018.10.025. [CrossRef] [Google Scholar]
- Zhu H, Chen H, Zhu W, He M. 2023. Predicting solar cycle 25 using an optimized long short-term memory model based on sunspot area data. Adv Space Res 71(8): 3521–3531. https://doi.org/10.1016/j.asr.2023.01.042. [CrossRef] [Google Scholar]
- Zurbuchen TH, Richardson IG. 2006. In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci Rev 123(1). https://doi.org/10.1007/s11214-006-9010-4. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.