Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
|
|
---|---|---|
Article Number | 8 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/swsc/2024040 | |
Published online | 12 March 2025 |
- Alfonsi L, De Franceschi G, Perrone L. 2001. Long term trend in the high latitude ionosphere. Phys Chem Earth Part C Solar Terr Planet Sci 26(5): 303–307. https://doi.org/10.1016/S1464-1917(01)00003-4. [Google Scholar]
- Alfonsi L, De Franceschi G, Perrone L, Materassi M. 2002. Long-term trends of the critical frequency of the F2 layer at northern and southern high latitude regions. Phys Chem Earth Parts A/B/C 27(6–8): 607–612. https://doi.org/10.1016/S1474-7065(02)00043-8. [CrossRef] [Google Scholar]
- Bhowmik P, Jiang J, Upton L, Lemerle A, Nandy D. 2023. Physical models for solar cycle predictions. Space Sci Rev 219(5): 40. https://doi.org/10.1007/s11214-023-00983-x. [CrossRef] [Google Scholar]
- Bibl K, Reinisch BD. 1978. The universal digital ionosonde. Radio Sci 13: 519–530. https://doi.org/10.1029/RS013i003p00519. [CrossRef] [Google Scholar]
- Bremer J. 1998. Trends in the ionospheric E and F regions over Europe. Ann Geophys 16: 986–996. [CrossRef] [Google Scholar]
- Bremer J. 2001. Trends in the thermosphere derived from global ionosonde observations. Adv Space Res 28: 997–1006. https://doi.org/10.1016/S0273-1177(01)80029-6. [CrossRef] [Google Scholar]
- Bremer J. 2008. Long-term trends in the ionospheric E and F1 regions. Ann Geophys 26: 1189–1197. [CrossRef] [Google Scholar]
- Cicone A, Pellegrino E. 2022. Multivariate fast iterative filtering for the decomposition of nonstationary signals. IEEE Trans Signal Process 70: 1521–1531. https://doi.org/10.1109/TSP.2022.3157482. [CrossRef] [Google Scholar]
- Cicone A, Zhou H. 2021. Numerical analysis for iterative filtering with new efficient implementations based on FFT. Numer Math 147: 1–28. https://doi.org/10.1007/s00211-020-01165-5. [CrossRef] [Google Scholar]
- Cicone A, Liu J, Zhou H. 2016. Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis. Appl Comput Harmonic Anal 41(2): 384–411. https://doi.org/10.1016/j.acha.2016.03.001. [CrossRef] [Google Scholar]
- Cicone A, Li WS, Zhou H. 2024. New theoretical insights in the decomposition and time-frequency representation of nonstationary signals: the IMFogram algorithm. Appl Comput Harmonic Anal 71: 101634 [CrossRef] [Google Scholar]
- Cnossen I. 2014. The importance of geomagnetic field changes versus rising CO2 levels for long-term change in the upper atmosphere. J Space Weather Space Clim 4: A18. https://doi.org/10.1051/swsc/2014016. [CrossRef] [EDP Sciences] [Google Scholar]
- Cnossen I. 2020. Analysis and attribution of climate change in the upper atmosphere from 1950 to 2015 simulated by WACCM-X. J Geophys Res Space Phys 125:e2020JA028623. https://doi.org/10.1029/2020JA028623. [CrossRef] [Google Scholar]
- Danilov AD. 2006. Progress in studies of the trends in the ionospheric F region. Phys Chem Earth 31: 34–40. https://doi.org/10.1016/j.pce.2005.02.002. [CrossRef] [Google Scholar]
- Danilov AD, Konstantinova AV. 2013. Trends in the F2 layer parameters at the end of the 1990s and the beginning of the 2000s. J Geophys Res Atmos 118: 5947–5964. https://doi.org/10.1002/jgrd.50501. [CrossRef] [Google Scholar]
- Elias AG, de Haro Barbas BF, Zossi BS, Medina FD, Fagre M, Venchiarutti JV. 2021. Review of long-term trends in the equatorial ionosphere due the geomagnetic field secular variations and its relevance to space weather. Atmosphere 13, 40. https://doi.org/10.3390/atmos13010040. [CrossRef] [Google Scholar]
- Elvidge S, Themens DR, Brown MK, Donegan‐Lawley E. 2023. What to do when the F10. 7 goes out? Space Weather, 21(4): e2022SW003392. https://doi.org/10.1029/2022SW003392. [CrossRef] [Google Scholar]
- Emmert JT. 2015a. Altitude and solar activity dependence of 1967–2005 thermospheric density trends derived from orbital drag. J Geophys Res Space Phys 120: 2940–2950. https://doi.org/10.1002/2015JA021047. [Google Scholar]
- Emmert JT. 2015b. Thermospheric mass density: A review. Adv Space Res 56: 773–824. https://doi.org/10.1016/j.asr.2015.05.038. [CrossRef] [Google Scholar]
- Ghobadi H, Spogli L, Alfonsi L, Cesaroni C, Cicone A, Linty N, Cafaro M. 2020. Disentangling ionospheric refraction and diffraction effects in GNSS raw phase through fast iterative filtering technique. GPS Solutions 24(3): 85. https://doi.org/10.1007/s10291-020-01001-1. [CrossRef] [Google Scholar]
- Hedin AE. 1987. MSIS-86 thermospheric model. J Geophys Res 92, 4649–4662. https://doi.org/10.1029/JA092iA05p04649. [CrossRef] [Google Scholar]
- Jarvis MJ, Jenkins B, Rodgers GA. 1998. Southern hemisphere observations of a long-term decrease in F region altitude and thermospheric wind providing possible evidence for global thermospheric cooling. J Geophys Res 103(A9): 20774–20787. https://doi.org/10.1029/98JA01629. [Google Scholar]
- Keeling CD, Bacastow RB, Bainbridge AE, Ekdahl Jr.CA, Guenther PR, Waterman LS, Chin JF. 1976. Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii. Tellus 28(6): 538–551. https://doi.org/10.3402/tellusa.v28i6.11322. [CrossRef] [Google Scholar]
- Laštovička J. 2013. Trends in the upper atmosphere and ionosphere: Recent progress. J Geophys Res Space Phys 118(6): 3924–3935. https://doi.org/10.1002/jgra.50341. [CrossRef] [Google Scholar]
- Laštovička J. 2017. A review of recent progress in trends in the upper atmosphere. J Atmos Solar-Terr Phys 163: 2–13. https://doi.org/10.1016/j.jastp.2017.03.009. [CrossRef] [Google Scholar]
- Laštovička J. 2023. Progress in investigating long-term trends in the mesosphere, thermosphere, and ionosphere. Atmos Chem Phys 23: 5783–5800. https://doi.org/10.5194/acp-23-5783-2023. [CrossRef] [Google Scholar]
- Laštovička J, Mikhailov AV, Ulich T, Bremer J, Elias AG, et al. 2006. Longterm trends in foF2: A comparison of various methods. J. Atmos. Solar-Terr. Phys 68: 1854–1870. [CrossRef] [Google Scholar]
- Laštovička J, Solomon SC, Qian L. 2012. Trends in the neutral and ionized upper atmosphere. Space Sci Rev 168: 113–145. https://doi.org/10.1007/s11214-011-9799-3. [CrossRef] [Google Scholar]
- Matzka J, Stolle C, Yamazaki Y, Bronkalla O, Morschhauser A. 2021. The geomagnetic Kp index and derived indices of geomagnetic activity. Space Weather 19(5): e2020SW002641. https://doi.org/10.1029/2020SW002641. [CrossRef] [Google Scholar]
- McInerney JM, Qian L, Liu H-L, Solomon SC, Nossal SM. 2024. Climate change in the thermosphere and ionosphere from the early twentieth century to early twenty-first century simulated by the whole atmosphere community climate model–eXtended. J Geophys Res Atmos 129, e2023JD039397. https://doi.org/10.1029/2023JD039397. [CrossRef] [Google Scholar]
- Mielich J, Bremer J. 2013. Long-term trends in the ionospheric F2 region with different solar activity indices. Ann Geophys 31: 291–303. https://doi.org/10.5194/angeo-31-291-2013. [CrossRef] [Google Scholar]
- Mikhailov AV, Perrone L. 2016a. Geomagnetic control of the midlatitude daytime foF1 and foF2 long‐term variations: Physical interpretation using European observations. J Geophys Res Space Phys 121(7): 7193–7203. https://doi.org/10.1002/2016JA022716. [CrossRef] [Google Scholar]
- Mikhailov AV, Perrone L. 2016b. Thermospheric parameters long-term variations retrieved from ionospheric observations in Europe. J Geophys Res Space Phys 121: 11574–11583. https://doi.org/10.1002/2016JA023234. [Google Scholar]
- Mikhailov AV, Belehaki A, Perrone L, Zolesi B, Tsagouri I. 2012. Retrieval of thermospheric parameters from routine ionospheric observations: assessment of method’s performance at mid-latitudes daytime hours. J Space Weather Space Clim 2: A03. https://doi.org/10.1051/swsc/2012002. [CrossRef] [EDP Sciences] [Google Scholar]
- Mikhailov A, Perrone L, Nusinov A. 2021. Thermospheric parameters’ long-term variations over the period including the 24/25 solar cycle minimum. Whether the CO2 increase effects are seen. J Atm Sol Terr Phys 223: 105736. https://doi.org/10.1016/j.jastp.2021.105736. [CrossRef] [Google Scholar]
- Ogawa Y, Motoba T, Buchert SC, Häggström I, Nozawa S. 2014. Upper atmosphere cooling over the past 33 years. Geophys Res Lett 41: 5629–5635. https://doi.org/10.1002/2014GL060591. [CrossRef] [Google Scholar]
- Oliver WL, Holt JM, Zhang S-R, Goncharenko LP. 2014. Long-term trends in thermospheric neutral temperature and density above Millstone Hill. J Geophys Res Space Phys 119: 7940–7946. https://doi.org/10.1002/2014GL060591. [CrossRef] [Google Scholar]
- Perrone L, Mikhailov AV. 2016. Geomagnetic control of the midlatitude foF1 and foF2 long‐term variations: Recent observations in Europe. J Geophys Res Space Phys 121(7): 7183–7192. https://doi.org/10.1002/2016JA022715. [CrossRef] [Google Scholar]
- Perrone L, Mikhailov AV. 2017. Long-term variations of exospheric temperature inferred from foF1 observations: A comparison to ISR Ti trend estimates. J Geophys Res Space Phys 122: 8883–8892. https://doi.org/10.1002/2017JA024193. [CrossRef] [Google Scholar]
- Perrone L, Mikhailov AV. 2018. A new method to retrieve thermospheric parameters from daytime bottom‐side Ne (h) observations. J Geophys Res Space Phys 123(12): 10–200. https://doi.org/10.1029/2018JA025762. [Google Scholar]
- Perrone L, Mikhailov AV. 2019. Long-term variations of June column atomic oxygen abundance in the upper atmosphere inferred from ionospheric observations. J Geophys Res Space Phys 124: 6305–6312. https://doi.org/10.1029/2019JA026818. [CrossRef] [Google Scholar]
- Perrone L, Mikhailov A, Cesaroni C, Alfonsi L, De Santis A, Pezzopane M, Scotto C. 2017. Long-term variations of the upper atmosphere parameters on Rome ionosonde observations and their interpretation. J Space Weather Space Clim 7, A21. https://doi.org/10.1051/swsc/2017021. [CrossRef] [EDP Sciences] [Google Scholar]
- Piersanti M, Materassi M, Cicone A, Spogli L, Zhou H, Ezquer RG. 2018. Adaptive local iterative filtering: A promising technique for the analysis of nonstationary signals. J Geophys Res Space Phys 123(1): 1031–1046. https://doi.org/10.1002/2017JA024153. [CrossRef] [Google Scholar]
- Qian L, Solomon SC, Roble RG, Kane TJ. 2008. Model simulations of global change in the ionosphere. Geophys Res Lett 35: L07811. https://doi.org/10.1029/2007GL033156. [CrossRef] [Google Scholar]
- Qian L, Laštovička J, Roble RG, Solomon SC. 2011. Progress in observations and simulations of global change in the upper atmosphere. J Geophys Res 116: A2. [Google Scholar]
- Rishbeth H. 1990. A greenhouse effect in the ionosphere? Planet Space Sci 38: 945–948. https://doi.org/10.1016/0032-0633(90)90061-T. [CrossRef] [Google Scholar]
- Rishbeth H, Roble RG. 1992. Cooling of the upper atmosphere by enhanced greenhouse gases–Modelling of thermospheric and ionospheric effects. Planet Space Sci 40: 1011–1026. https://doi.org/10.1016/0032-0633(92)90141-A. [CrossRef] [Google Scholar]
- Roble RG, Dickinson RE. 1989. How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere? Geophys Res Lett 16: 1441–1444. https://doi.org/10.1029/GL016i012p01441. [CrossRef] [Google Scholar]
- Roininen L, Laine M, Ulich T. 2015. Time-varying ionosonde trend: Case study of Sodankyla hmF2 data 1957–2014. J Geophys Res Space Phys 120: 6851–6859. https://doi.org/10.1002/2015JA021176. [CrossRef] [Google Scholar]
- Rostoker G. 1972. Geomagnetic indices. Rev Geophys 10(4): 935–950. https://doi.org/10.1029/RG010i004p00935. [CrossRef] [Google Scholar]
- Sharma S, Chandra H, Vyas GD. 1999. Long-term ionospheric trends over Ahmedabad. Geophys Res Lett 26(N3): 433–436. https://doi.org/10.1029/1998GL900303. [CrossRef] [Google Scholar]
- Solomon SC, Liu H-L, Marsh DR, McInerney JM, Qian L, Vitt FM. 2018. Whole atmosphere simulation of anthropogenic climate change. Geophys Res Lett 45: 1567–1576, https://doi.org/10.1002/2017GL076950. [CrossRef] [Google Scholar]
- Somoye EO. 2009. Periodicity of solar cycle from diurnal variations of f0F2. Int J Phys Sci 4: 111–114. Available at https://academicjournals.org/article/article1380617682_Somoye%202.pdf. [Google Scholar]
- Spogli L, Ghobadi H, Cicone A, Alfonsi L, Cesaroni C, Linty N, Cafaro M. 2021. Adaptive phase detrending for GNSS scintillation detection: A case study over Antarctica. IEEE Geosci Remote Sens Lett 19: 1–5. https://doi.org/10.1109/LGRS.2021.3067727. [Google Scholar]
- Stallone A, Cicone A, Materassi M. 2020. New insights and best practices for the successful use of Empirical Mode Decomposition, Iterative Filtering and derived algorithms. Scientific Rep 10(1): 15161. https://doi.org/10.1038/s41598-020-72193-2. [CrossRef] [Google Scholar]
- Tapping KF. 2013. The 10.7 cm solar radio flux (F10. 7). Space Weather 11(7): 394–406. https://doi.org/10.1002/swe.20064. [CrossRef] [Google Scholar]
- Ulich Th, Turunen E. 1997. Evidence for ng-term cooling of the upper atmosphere in ionosonde data. Geophys Res Lett 24(N9): 1103–1106. https://doi.org/10.1029/97GL50896. [CrossRef] [Google Scholar]
- Upper Atmosphere Physics and Radiopropagation Working Group, Cossari A, Fontana G, Marcocci C, Pau S, Pezzopane M, Pica E, Zuccheretti E. 2020. Electronic Space Weather upper atmosphere database (eSWua) – HF validated data (Version 1.0). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/eswua/hfvalidated. [Google Scholar]
- Urbar J, Spogli L, Cicone A, Clausen LB, Jin Y, Wood AG, Alfonsi L, Cesaroni C, Kotova D, Høeg P, Miloch WJ. 2023. Multi-scale response of the high-latitude topside ionosphere to geospace forcing. Adv Space Res 72: 5490–5502. [CrossRef] [Google Scholar]
- Waldmeier M. 1935. Neue Eigenschaften der Sonnenfleckenkurve. Astron Mitt Eidgenöss Sternwarte Zür 14: 105–136. [Google Scholar]
- Zhang S-R, Holt JM. 2013. Long-term ionospheric cooling: Dependency on local time, season, solar activity, and geomagnetic activity. J Geophys Res 118: 3719–3730. https://doi.org/10.1002/jgra.50306. [CrossRef] [Google Scholar]
- Zhang S-R, Holt JM, Kurdzo J. 2011. Millstone Hill ISR observations of upper atmospheric long-term changes: Height dependency. J Geophys Res 116: A00H05. https://doi.org/10.1029/2010JA016414. [Google Scholar]
- Zuccheretti E. 1998. Interfacing and off-line analysis for VOS-1A Barry ionosonde. Ann Geofis 41: 633–641. http://hdl.handle.net/2122/1482. [Google Scholar]
- Zuccheretti E, Tutone G, Sciacca U, Bianchi C, Baskaradas JA. 2003. The new AIS-INGV digital ionosonde. Ann Geophys 46: 647–659. https://doi.org/10.4401/ag-4377. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.