Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
|
|
---|---|---|
Article Number | 10 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/swsc/2025008 | |
Published online | 28 March 2025 |
- Akmaev RA, Fuller-Rowell TJ, Wu F, Forbes JM, Zhang X, Anghel AF. 2008. Tidal variability in the lower thermosphere: comparison of whole atmosphere model (WAM) simulations with observations from TIMED. Geophys Res Lett 35(3): L03810. http://dx.doi.org/10.1029/2007GL032584. [CrossRef] [Google Scholar]
- Barta V, Sátori G, Berényi KA, Kis Á, Williams E. 2019. Effects of solar flares on the ionosphere as shown by the dynamics of ionograms recorded in Europe and South Africa. Ann Geophys 37: 747–761. http://dx.doi.org/10.5194/angeo-37-747-2019. [Google Scholar]
- Bornmann PL, Speich D, Hirman J, Matheson L, Grubb R, et al. 1996. GOES x-ray sensor and its use in predicting solar-terrestrial disturbances. In: Washwell ER (Ed.), GOES-8 and beyond, vol. 2812. International Society for Optics and Photonics, SPIE, pp. 291–298. http://dx.doi.org/10.1117/12.254076. [CrossRef] [Google Scholar]
- Buzás A, Kouba D, Mielich J, Burešová D, Mošna Z, et al. 2023. Investigating the effect of large solar flares on the ionosphere based on novel Digisonde data comparing three different methods. Front Astron Space Sci 10: 1201625. http://dx.doi.org/10.3389/fspas.2023.1201625. [Google Scholar]
- Chamberlin PC, Eparvier FG, Knoer V, Leise H, Pankratz A, et al. 2020. The flare irradiance spectral model-version 2 (FISM2). Space Weather 18(12): e2020SW002588. http://dx.doi.org/10.1029/2020SW002588. [CrossRef] [Google Scholar]
- Chum J, Urbář J, Laštovička J, Cabrera MA, Liu J-Y, et al. 2018. Continuous Doppler sounding of the ionosphere during solar flares. Earth Planets Space 70(198): 1–19. http://dx.doi.org/10.1186/s40623-018-0976-4. [CrossRef] [Google Scholar]
- Dellinger JH. 1937. Sudden ionospheric disturbances. Terr Magn Atmos Electr 42(1): 49–53. http://dx.doi.org/10.1029/TE042i001p00049. [Google Scholar]
- DeMastus H, Wood M. 1960. Short-wave fadeouts without reported flares. J Geophys Res (1896–1977) 65(2): 609–611. http://dx.doi.org/10.1029/JZ065i002p00609. [Google Scholar]
- Deshpande SD, Subrahmanyam CV, Mitra AP. 1972. Ionospheric effects of solar flares-I. The statistical relationship between X-ray flares and SID’s. J Atmos Terr Phys 34(2): 211–227. http://dx.doi.org/10.1016/0021-9169(72)90165-1. [Google Scholar]
- Eparvier FG, Crotser D, Jones AR, McClintock WE, Snow M, Woods TN. 2009. The extreme ultraviolet sensor (EUVS) for GOES-R. In: Fineschi S, Fennelly JA (Eds.), Solar physics and space weather instrumentation III, vol. 7438. International Society for Optics and Photonics, SPIE, p. 743804. http://dx.doi.org/10.1117/12.826445. [Google Scholar]
- Fletcher L, Dennis BR, Hudson HS, Krucker S, Phillips K, et al. 2011. An observational overview of solar flares. Space Sci Rev 159: 19–106. http://dx.doi.org/10.1007/s11214-010-9701-8. [Google Scholar]
- Friis HT. 1946. A note on a simple transmission formula. Proc IRE 34(5): 254–256. http://dx.doi.org/10.1109/JRPROC.1946.234568. [Google Scholar]
- Fujiwara H, Miyoshi Y. 2006. Characteristics of the large-scale traveling atmospheric disturbances during geomagnetically quiet and disturbed periods simulated by a whole atmosphere general circulation model. Geophys Res Lett 33(20): L20108. http://dx.doi.org/10.1029/2006GL027103. [CrossRef] [Google Scholar]
- Horan DM, Kreplin RW, Dere P. 1983. Direct measurements of the gradual extreme ultraviolet emission from large solar flares. Sol Phys 85(2): 303–312. http://dx.doi.org/10.1007/BF00148656. [Google Scholar]
- Jin H, Miyoshi Y, Fujiwara H, Shinagawa H. 2008. Electrodynamics of the formation of ionospheric wave number 4 longitudinal structure. J Geophys Res Space Phys 113(A9): A09307. http://dx.doi.org/10.1029/2008JA013301. [Google Scholar]
- Jin H, Miyoshi Y, Fujiwara H, Shinagawa H, Terada K, et al. 2011. Vertical connection from the tropospheric activities to the ionospheric longitudinal structure simulated by a new Earth’s whole atmosphere-ionosphere coupled model. J Geophys Res Space Phys 116(A1): A01316. http://dx.doi.org/10.1029/2010JA015925. [Google Scholar]
- Kelly PT, Rense WA. 1972. Solar flares in the EUV observed from OSO-5. Sol Phys 26: 431–440. http://dx.doi.org/10.1007/BF00165285. [Google Scholar]
- Liu HL, Foster BT, Hagan ME, Mclnerney JM, Maute A, et al. 2010. Thermosphere extension of the whole atmosphere community climate model. J Geophys Res Space Phys 115(A12): A12302. http://dx.doi.org/10.1029/2010JA015586. [Google Scholar]
- Machol JL, Eparvier FG, Viereck RA, Woodraska DL, Snow M, et al. 2020. Chapter 19 – GOES-R series solar X-ray and ultraviolet irradiance. In: The GOES-R series. Elsevier, Amsterdam, Netherlands, pp. 233–242. http://dx.doi.org/10.1016/B978-0-12-814327-8.00019-6. [Google Scholar]
- Manju G, Simi KG, Prabhakaran Nayar S. 2012. Analysis of solar EUV and X-ray flux enhancements during intense solar flare events and the concomitant response of equatorial and low latitude upper atmosphere. J Atmos Sol Terr Phys 86: 1–5. http://dx.doi.org/10.1016/j.jastp.2012.05.008. [Google Scholar]
- Milligan R, Hudson HS, Chamberlin PC, Hannah IG, Hayes LA. 2020. Lyman-alpha variability during solar flares over solar cycle 24 using GOES-15/EUVS-E. Space Weather 18(7): e2019SW002331. http://dx.doi.org/10.1029/2019SW002331. [CrossRef] [Google Scholar]
- Mitra AP. 1974. Ionospheric effects of solar flares. Springer Dordrecht. http://dx.doi.org/10.1007/978-94-010-2231-6. [Google Scholar]
- Miyoshi Y, Fujiwara H. 2003. Day-to-day variations of migrating diurnal tide simulated by a GCM from the ground surface to the exobase. Geophys Res Lett 30(15): 1789. http://dx.doi.org/10.1029/2003GL017695. [CrossRef] [Google Scholar]
- Miyoshi Y, Fujiwara H. 2008. Gravity waves in the thermosphere simulated by a general circulation model. J Geophys Res Atmos 113(D1): D01101. http://dx.doi.org/10.1029/2007JD008874. [Google Scholar]
- Nicolet M, Aikin AC. 1960. The formation of the D region of the ionosphere. J Geophys Res (1896–1977) 65(5): 1469–1483. http://dx.doi.org/10.1029/JZ065i005p01469. [Google Scholar]
- Qian L, Burns AG, Chamberlin PC, Solomon SC. 2011. Variability of thermosphere and ionosphere responses to solar flares. J Geophys Res Space Phys 116(A10): A10309. http://dx.doi.org/10.1029/2011JA016777. [Google Scholar]
- Raulin JP, Trottet G, Macotela M, Macotela EL, Pacini A, et al. 2013. Response of the low ionosphere to X-ray and Lyman-α solar flare emissions. J Geophys Res Space Phys 118(1): 570–575. http://dx.doi.org/10.1029/2012JA017916. [CrossRef] [Google Scholar]
- Redmon RJ, Seaton D, Steenburgh R, He J, Rodriguez JV. 2018. September 2017’s geoeffective space weather and impacts to caribbean radio communications during hurricane response. Space Weather 16(9): 1190–1201. http://dx.doi.org/10.1029/2018SW001897. [CrossRef] [Google Scholar]
- Rishbeth JA, Garriot OK. 1969. III. Photochemical processes in the ionosphere. In: Introduction to ionospheric physics, vol. 14 of International Geophysics. Academic Press, Cambridge, Massachusetts, United States, pp. 87–125. http://dx.doi.org/10.1016/S0074-6142(09)60023-1. [Google Scholar]
- Roble R, Ridley E. 1994. A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): equinox solar cycle minimum simulations (30–500 km). Geophys Res Lett 21(6): 417–420. http://dx.doi.org/10.1029/93GL03391. [CrossRef] [Google Scholar]
- Rutledge R, Desbios S. 2018. Space weather focus: impacts of a severe space weather event on aviation operations. World Meteorological Organization Commission for Aeronautical Meteorology (CAeM) Newsletter. https://mailchi.mp/f7811e0713c9/wmo-caem-newsletter-issue-12018. [Google Scholar]
- Sato T. 1975. Sudden fmin enhancements and sudden cosmic noise absorptions associated with solar X-ray flares. J Geomagn Geoelectr 27(2): 95–112. http://dx.doi.org/10.5636/jgg.27.95. [Google Scholar]
- Schumer EA. 2009. Improved modeling of midlatitude D region ionospheric absorption of high frequency radio signals during solar X-ray flares. Ph.D. thesis, Air Force Institute of Technology. 2155, pp. 6–8. https://scholar.afit.edu/etd/2155/. [Google Scholar]
- Shinagawa H, Oyama S. 2006. A two-dimensional simulation of thermospheric vertical winds in the vicinity of an auroral arc. Earth Planets Space 58: 1173–1181. http://dx.doi.org/10.1186/BF03352007. [Google Scholar]
- Sojka JJ, Jensen J, David M, Schunk RW, Woods T, Eparvier F. 2013. Modeling the ionospheric E and F1 regions: using SDO-EVE observations as the solar irradiance driver. J Geophys Res Space Phys 118(8): 5379–5391. http://dx.doi.org/10.1002/jgra.50480. [Google Scholar]
- Solomon SC, Qian L. 2005. Solar extreme-ultraviolet irradiance for general circulation models. J Geophys Res Space Phys 110(A10): A10306. . http://dx.doi.org/10.1029/2005JA011160. [Google Scholar]
- Tao C, Nishioka M, Saito S, Shiota D, Watanabe K, et al. 2020. Statistical analysis of short-wave fadeout for extreme space weather event estimation. Earth Planets Space 72(173): 1–16. http://dx.doi.org/10.1186/s40623-020-01278-z. [NASA ADS] [CrossRef] [Google Scholar]
- Thome GD, Wagner LS. 1971. Electron density enhancements in the E and F regions of the ionosphere during solar flares. J Geophys Res (1896–1977) 76(28): 6883–6895. http://dx.doi.org/10.1029/JA076i028p06883. [Google Scholar]
- Watanabe K, Hinteregger HE. 1962. Photoionization rates in the E and F regions. J Geophys Res (1896–1977) 67(3): 999–1006. http://dx.doi.org/10.1029/JZ067i003p00999. [Google Scholar]
- Watanabe K, Masuda S, Segawa T. 2012. Hinode flare catalogue. Sol Phys 279: 317–322. http://dx.doi.org/10.1007/s11207-012-9983-y. [Google Scholar]
- Woods TN, Eparvier FG, Hock R, Jones AR, Woodraska D, et al. 2012. Extreme ultraviolet variability experiment (EVE) on the solar dynamics observatory (SDO): overview of science objectives, instrument design, data products, and model developments. Sol Phys 275: 115–143. http://dx.doi.org/10.1007/s11207-009-9487-6. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.