Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
Topical Issue - Observing, modelling and forecasting TIDs and mitigating their impact on technology
|
|
---|---|---|
Article Number | 6 | |
Number of page(s) | 21 | |
DOI | https://doi.org/10.1051/swsc/2025002 | |
Published online | 04 March 2025 |
- Alken P, Thébault E, Beggan CD, Amit H, Aubert J, et al. 2021. International geomagnetic reference field: the thirteenth generation. Earth Planets Space 73(1): 1–25. https://doi.org/10.1186/s40623-020-01288-x. [CrossRef] [Google Scholar]
- Beser K, Mevius M, Grzesiak M, Rothkaehl H. 2022. Detection of periodic disturbances in LOFAR calibration solutions. Remote Sens 14(7): 1719. https://doi.org/10.3390/rs14071719. [CrossRef] [Google Scholar]
- Boyde B, Wood A, Dorrian G, Fallows RA, Themens D, et al. 2022. Lensing from small-scale travelling ionospheric disturbances observed using LOFAR. J Space Weather Space Clim 12: 34. https://doi.org/10.1051/swsc/2022030. [CrossRef] [EDP Sciences] [Google Scholar]
- Boyde B, Wood A, Dorrian G, Sweijen F, de Gasperin F, Mevius M, Beser K, Themens D. 2024. Wavelet analysis of differential TEC measurements obtained using LOFAR. Radio Sci 59(4): e2023RS007871. https://doi.org/10.1029/2023RS007871. [CrossRef] [Google Scholar]
- Buss S, Hertzog A, Hostettler C, Bui TB, Lüthi D, Wernli H. 2004. Analysis of a jet stream induced gravity wave associated with an observed ice cloud over Greenland. Atmos Chem Phys 4(5): 1183–1200. https://doi.org/10.5194/acp-4-1183-2004. [CrossRef] [Google Scholar]
- Chum J, Šindelářová T, Laštovička J, Hruška F, Burešová D, Baše J. 2010. Horizontal velocities and propagation directions of gravity waves in the ionosphere over the Czech Republic. J Geophys Res 115: A11322. https://doi.org/10.1029/2010JA015821. [CrossRef] [Google Scholar]
- Chum J, Podolská K, Rusz J, Baše J, Tedoradze N. 2021. Statistical investigation of gravity wave characteristics in the ionosphere. Earth Planets Space 73: 1–16. https://doi.org/10.1186/s40623-021-01379-3. [CrossRef] [Google Scholar]
- Cowling D, Webb H, Yeh K. 1971. Group rays of internal gravity waves in a wind-stratified atmosphere. J Geophys Res 76(1): 213–220. https://doi.org/10.1029/JA076i001p00213. [CrossRef] [Google Scholar]
- Crowley G, Jones T, Dudeney J. 1987. Comparison of short period TID morphologies in Antarctica during geomagnetically quiet and active intervals. J Atmos Sol Terr Phys 49(11): 1155–1162. https://doi.org/10.1016/0021-9169(87)90098-5. [CrossRef] [Google Scholar]
- Crowley G, Rodrigues FS. 2012. Characteristics of traveling ionospheric disturbances observed by the TIDDBIT sounder. Radio Sci 47(4): RS0L22. https://doi.org/10.1029/2011RS004959. [CrossRef] [Google Scholar]
- de Gasperin F, Dijkema TJ, Drabent A, Mevius M, Rafferty D, et al . 2019. Systematic effects in LOFAR data: A unified calibration strategy. A&A 622: A5. https://doi.org/10.1051/0004-6361/201833867. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- de Gasperin F, Mevius M, Rafferty D, Intema H, Fallows R. 2018. The effect of the ionosphere on ultra-low-frequency radio-interferometric observations. A&A 615: A179. https://doi.org/10.1051/0004-6361/201833012. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- de Gasperin F, Williams WL, Best P, Brüggen M, Brunetti G, et al. 2021. The LOFAR LBA Sky Survey-I. Survey description and preliminary data release. A&A 648: A104. https://doi.org/10.1051/0004-6361/202140316. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Ding F, Wan W, Xu G, Yu T, Yang G, Wang J-S. 2011. Climatology of medium-scale traveling ionospheric disturbances observed by a GPS network in central China. J Geophys Res Space Phys 116(A9): A09327. https://doi.org/10.1029/2011JA016545. [Google Scholar]
- Dorrian G, Fallows R, Wood A, Themens DR, Boyde B, Krankowski A, Bisi M, Dabrowski B, Vocks C. 2023. LOFAR observations of substructure within a traveling ionospheric disturbance at mid-latitude. Space Weather 21(1): e2022SW003198. https://doi.org/10.1029/2022SW003198. [CrossRef] [Google Scholar]
- Drob DP, Emmert JT, Meriwether JW, Makela JW, Doornbos E, et al. 2015. An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth Space Sci 2(7): 301–319. https://doi.org/10.1002/2014EA000089. [CrossRef] [Google Scholar]
- Ester M, Kriegel H-P, Sander J, Xu X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis E, Han J, Fayyad U (Eds.), Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD-96, AAAI Press, Menlo Park, CA, USA, pp. 226–231. https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf. [Google Scholar]
- Fallows RA, Forte B, Astin I, Allbrook T, Arnold A, et al. 2020. A LOFAR observation of ionospheric scintillation from two simultaneous travelling ionospheric disturbances. J Space Weather Space Clim 10: 10. https://doi.org/10.1051/swsc/2020010. [CrossRef] [EDP Sciences] [Google Scholar]
- Fedorenko YP, Fedorenko V, Lysenko V. 2011. Parameters of the medium-scale traveling ionospheric disturbances model deduced from measurements. Geomagn Aeron 51(1): 88–104. https://doi.org/10.1134/S0016793210061015. [CrossRef] [Google Scholar]
- Fišer J, Chum J, Liu J-Y. 2017. Medium-scale traveling ionospheric disturbances over Taiwan observed with HF Doppler sounding. Earth Planets Space 69: 1–10. https://doi.org/10.1186/s40623-017-0719-y. [NASA ADS] [CrossRef] [Google Scholar]
- Frissell NA, Baker J, Ruohoniemi JM, Gerrard AJ, Miller ES, Marini JP, West ML, Bristow WA. 2014. Climatology of medium-scale traveling ionospheric disturbances observed by the midlatitude Blackstone SuperDARN radar. J Geophys Res Space Phys 119(9): 7679–7697. https://doi.org/10.1002/2014JA019870. [CrossRef] [Google Scholar]
- Frissell NA, Baker JBH, Ruohoniemi JM, Greenwald RA, Gerrard AJ, Miller ES, West ML. 2016. Sources and characteristics of medium-scale traveling ionospheric disturbances observed by high-frequency radars in the North American sector. J Geophys Res Space Phys 121(4): 3722–3739. https://doi.org/10.1002/2015JA022168. [CrossRef] [Google Scholar]
- Fritts DC, Alexander MJ. 2003. Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41(1): 1003. https://doi.org/10.1029/2001RG000106. [CrossRef] [Google Scholar]
- Galushko V, Paznukhov V, Yampolski Y, Foster J. 1998. Incoherent scatter radar observations of AGW/TID events generated by the moving solar terminator. Ann Geophys 16(7): 821–827. https://doi.org/10.1007/s00585-998-0821-3. [CrossRef] [Google Scholar]
- Hines CO. 1960. Internal atmospheric gravity waves at ionospheric heights. Can J Phys 38(11): 1441–1481. https://doi.org/10.1139/p60-150. [CrossRef] [Google Scholar]
- Hocke K, Schlegel K. 1996. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann Geophys 14(9): 917. https://doi.org/10.1007/s00585-996-0917-6. [Google Scholar]
- Hoogeveen G, Jacobson A. 1997. Improved analysis of plasmasphere motion using the VLA radio interferometer. Ann Geophys 15(2): 236–245. https://doi.org/10.1007/s00585-997-0236-6. [CrossRef] [Google Scholar]
- Hooke WH. 1968. Ionospheric irregularities produced by internal atmospheric gravity waves. J Atmos Sol Terr Phys 30(5): 795–823. https://doi.org/10.1016/S0021-9169(68)80033-9. [CrossRef] [Google Scholar]
- Hunsucker RD. 1982. Atmospheric gravity waves generated in the high-latitude ionosphere: a review. Rev Geophys 20(2): 293–315. https://doi.org/10.1029/RG020i002p00293. [CrossRef] [Google Scholar]
- Inchin PA, Snively JB, Zettergren MD, Komjathy A, Verkhoglyadova OP, Tulasi Ram S. 2020. Modeling of ionospheric responses to atmospheric acoustic and gravity waves driven by the 2015 Nepal 7.8 Gorkha earthquake. J Geophys Res Space Phys 125(4): e2019JA027200. https://doi.org/10.1029/2019JA027200. [CrossRef] [Google Scholar]
- Jacobson AR, Carlos RC, Massey RS, Wu G. 1995. Observations of traveling ionospheric disturbances with a satellite-beacon radio interferometer: seasonal and local time behavior. J Geophys Res Space Phys 100 (A2): 1653–1665. https://doi.org/10.1029/94JA02663. [CrossRef] [Google Scholar]
- Jacobson AR, Erickson WC. 1992. Wavenumber-resolved observations of ionospheric waves using the very large array radiotelescope. Planet Space Sci 40(4): 447–455. https://doi.org/10.1016/0032-0633(92)90163-I. [CrossRef] [Google Scholar]
- Jacobson AR, Erickson WC. 1993. Observations of electron density irregularities in the plasmasphere using the VLA radio interferometer. Ann Geophys 11(10): 869–888. [Google Scholar]
- Kirkland MW, Jacobson AR. 1998. Drift-parallax determination of the altitude of traveling ionospheric disturbances observed with the Los Alamos radio-beacon interferometer. Radio Sci 33(6): 1807–1825. https://doi.org/10.1029/98RS02033. [CrossRef] [Google Scholar]
- Koval A, Chen Y, Stanislavsky A, Zhang Q-H. 2017. Traveling ionospheric disturbances as huge natural lenses: Solar radio emission focusing effect. J Geophys Res Space Phys 122(9): 9092–9101. https://doi.org/10.3847/1538-4357/ab1b52. [CrossRef] [Google Scholar]
- Lane TP, Reeder MJ, Clark TL. 2001. Numerical modeling of gravity wave generation by deep tropical convection. J Atmos Sci 58(10): 1249–1274. https://doi.org/10.1175/1520-0469(2001)058<1249:NMOGWG>2.0.CO;2. [CrossRef] [Google Scholar]
- Laughman B, Fritts DC, Lund TS. 2017. Tsunami-driven gravity waves in the presence of vertically varying background and tidal wind structures. J Geophys Res Atmos 122(10): 5076–5096. https://doi.org/10.1002/2016JD025673. [CrossRef] [Google Scholar]
- Liu X, Xu J, Yue J, Vadas SL, Becker E. 2019. Orographic primary and secondary gravity waves in the middle atmosphere From 16-year SABER observations. Geophys Res Lett 46(8): 4512–4522. https://doi.org/10.1029/2019GL082256. [CrossRef] [Google Scholar]
- Medvedev A, Ratovsky K, Tolstikov M, Alsatkin S, Shcherbakov A. 2015. A statistical study of internal gravity wave characteristics using the combined Irkutsk incoherent scatter radar and digisonde data. J Atmos Sol Terr Phys 132: 13–21. https://doi.org/10.1016/j.jastp.2015.06.012. [CrossRef] [Google Scholar]
- Medvedev AV, Ratovsky KG, Tolstikov MV, Oinats AV, Alsatkin SS, Zherebtsov GA. 2017. Relation of internal gravity wave anisotropy with neutral wind characteristics in the upper atmosphere. J Geophys Res Space Phys 122(7), 7567–7580. https://doi.org/10.1002/2017JA024103. [CrossRef] [Google Scholar]
- Mevius M, van der Tol S, Pandey VN, Vedantham HK, Brentjens MA, et al. 2016. Probing ionospheric structures using the LOFAR radio telescope. Radio Sci 51(7): 927–941. https://doi.org/10.1002/2016RS006028. [CrossRef] [Google Scholar]
- Negrea C, Zabotin N, Bullett T. 2018. Seasonal variability of the midlatitude traveling ionospheric disturbances from Wallops Island, VA, dynasonde data: evidence of a semiannual variation. J Geophys Res Space Phys 123(6), 5047–5054. https://doi.org/10.1029/2017JA025164. [CrossRef] [Google Scholar]
- Negrea C, Zabotin N, Bullett T, Fuller-Rowell T, Fang T-W, Codrescu M. 2016. Characteristics of acoustic gravity waves obtained from dynasonde data. J Geophys Res Space Phys 121(4): 3665–3680. https://doi.org/10.1002/2016JA022495. [CrossRef] [Google Scholar]
- Nicolls MJ, Heinselman CJ. 2007. Three-dimensional measurements of traveling ionospheric disturbances with the Poker Flat incoherent scatter radar. Geophys Res Lett 34(21): L21104. https://doi.org/10.1029/2007GL031506. [Google Scholar]
- Oinats AV, Nishitani N, Ponomarenko P, Berngardt OI, Ratovsky KG. 2016. Statistical characteristics of medium-scale traveling ionospheric disturbances revealed from the Hokkaido East and Ekaterinburg HF radar data. Earth Planets Space 68(1): 1–13. https://doi.org/10.1186/s40623-016-0390-8. [CrossRef] [Google Scholar]
- Oliver WL, Otsuka Y, Sato M, Takami T, Fukao S. 1997. A climatology of F region gravity wave propagation over the middle and upper atmosphere radar. J Geophys Res Space Phys 102(A7): 14499–14512. https://doi.org/10.1029/97JA00491. [CrossRef] [Google Scholar]
- Otsuka Y, Suzuki K, Nakagawa S, Nishioka M, Shiokawa K, Tsugawa T. 2013. GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann Geophys 31(2), 163–172. https://doi.org/10.5194/angeo-31-163-2013. [CrossRef] [Google Scholar]
- Panasenko SV, Goncharenko LP, Erickson PJ, Aksonova KD, Domnin IF. 2018. Traveling ionospheric disturbances observed by Kharkiv and Millstone Hill incoherent scatter radars near vernal equinox and summer solstice. J Atmos Sol Terr Phys 172: 10–23. https://doi.org/10.1016/j.jastp.2018.03.001. [CrossRef] [Google Scholar]
- Park J, Lühr H, Lee C, Kim YH, Jee G, Kim J-H. 2014.. A climatology of medium-scale gravity wave activity in the midlatitude/low-latitude daytime upper thermosphere as observed by CHAMP. J Geophys Res Space Phys 119: 2187–2196. https://doi.org/10.1002/jgra.50886. [CrossRef] [Google Scholar]
- Sato K, Yoshiki M. 2008. Gravity wave generation around the polar vortex in the stratosphere revealed by 3-hourly radiosonde observations at Syowa Station. J Atmos Sci 65(12): 3719–3735. https://doi.org/10.1175/2008JAS2539.1. [CrossRef] [Google Scholar]
- Sivakandan M, Otsuka Y, Ghosh P, Shinagawa H, Shinbori A, Miyoshi Y. 2021. Comparison of seasonal and longitudinal variation of daytime MSTID activity using GPS observation and GAIA simulations. Earth Planets Space 73: 1–16. https://doi.org/10.1186/s40623-021-01369-5. [CrossRef] [Google Scholar]
- Snively JB, Pasko VP. 2003. Breaking of thunderstorm-generated gravity waves as a source of short-period ducted waves at mesopause altitudes. Geophys Res Lett 30(24): 2254. https://doi.org/10.1029/2003GL018436. [CrossRef] [Google Scholar]
- Thompson AR, Clark B, Wade C, Napier PJ. 1980. The very large array. Astrophys J Suppl Ser 44: 151–167. https://doi.org/10.1086/190688. [CrossRef] [Google Scholar]
- Torrence C, Compo GP. 1998. A practical guide to wavelet analysis. Bull Am Meterol Soc 79(1): 61–78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2. [CrossRef] [Google Scholar]
- Trigg H, Dorrian G, Boyde B, Wood A, Fallows RA, Mevius M. 2024. Observations of high definition symmetric quasi-periodic scintillations in the mid-latitude ionosphere with LOFAR. J Geophys Res Space Phys 129(7): e2023JA032336. https://doi.org/10.1029/2023JA032336. [CrossRef] [Google Scholar]
- Vadas SL. 2007. Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J Geophys Res Space Phys 112(A6): A06305. https://doi.org/10.1029/2006JA011845. [CrossRef] [Google Scholar]
- Vadas SL, Fritts DC. 2002. The importance of spatial variability in the generation of secondary gravity waves from local body forces. Geophys Res Lett 29(20): 45-1–45-4. https://doi.org/10.1029/2002GL015574. [CrossRef] [Google Scholar]
- Vadas SL, Fritts DC. 2005. Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity. J Geophys Res Atmos 110(D15): D15103. https://doi.org/10.1029/2004JD005574. [CrossRef] [Google Scholar]
- Vadas SL, Fritts DC, Alexander MJ. 2003. Mechanism for the generation of secondary waves in wave breaking regions. J Atmos Sci 60(1): 194–214. https://doi.org/10.1175/1520-0469(2003)060<0194:MFTGOS>2.0.CO;2. [CrossRef] [Google Scholar]
- van Haarlem MP, Wise MW, Gunst AW, Heald G, McKean JP, et al. 2013. LOFAR: The LOw-Frequency ARray. A&A 556: A2. https://doi.org/10.1051/0004-6361/201220873. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Waldock J, Jones T. 1986. HF Doppler observations of medium-scale travelling ionospheric disturbances at mid-latitudes. J Atmos Sol Terr Phys 48(3): 245–260. https://doi.org/10.1016/0021-9169(86)90099-1. [CrossRef] [Google Scholar]
- Wood AG, Dorrian GD, Boyde B, Fallows RA, Themens DR, Mevius M, Sprenger T, Main R, Pryse SE, Elvidge S. 2024. Quasi-stationary substructure within a sporadic E layer observed by the Low-Frequency Array (LOFAR). J Space Weather Space Clim 14: 27. https://doi.org/10.1051/swsc/2024024. [CrossRef] [EDP Sciences] [Google Scholar]
- Wright CJ, Hindley NP, Alexander MJ, Barlow M, Hoffmann L, et al. 2022. Surface-to-space atmospheric waves from Hunga Tonga–Hunga Ha’apai eruption. Nature 609(7928): 741–746. https://doi.org/10.1038/s41586-022-05012-5. [CrossRef] [Google Scholar]
- Wüst S, Bittner M. 2006. Non-linear resonant wave-wave interaction (triad): Case studies based on rocket data and first application to satellite data. J Atmos Sol Terr Phys 68(9): 959–976. https://doi.org/10.1016/j.jastp.2005.11.011. [CrossRef] [Google Scholar]
- Xu S, Vadas SL, Yue J. 2024. Quiet time thermospheric gravity waves observed by GOCE and CHAMP. J Geophys Res Space Phys 129(1): e2023JA032078. https://doi.org/10.1029/2023JA032078. [CrossRef] [Google Scholar]
- Yiğit E, Knížová PK, Georgieva K, Ward W. 2016. A review of vertical coupling in the Atmosphere-ionosphere system: effects of waves, sudden stratospheric warmings, space weather, and of solar activity. J Atmos Sol Terr Phys 141: 1–12. https://doi.org/10.1016/j.jastp.2016.02.011. [CrossRef] [Google Scholar]
- Yin F, Lühr H, Park J, Wang L. 2019. Comprehensive analysis of the magnetic signatures of small-scale traveling ionospheric disturbances, as observed by Swarm. J Geophys Res Space Phys 124(12): 10794–10815. https://doi.org/10.1029/2019JA027523. [CrossRef] [Google Scholar]
- Zalizovski AV, Yampolski YM, Mishin E, Kashcheyev SB, Sopin AO, Koloskov AV, Lisachenko VN, Reznychenko AI. 2021. Multi-position facility for HF Doppler sounding of ionospheric inhomogeneities in Ukraine. Radio Sci 56(10): e2021RS007303. https://doi.org/10.1029/2021RS007303. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.