Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
|
|
---|---|---|
Article Number | 5 | |
Number of page(s) | 23 | |
DOI | https://doi.org/10.1051/swsc/2025001 | |
Published online | 04 March 2025 |
- Aarons, J, Mendillo M, Yantosca R, Kudeki E. 1996. GPS phase fluctuations in the equatorial region during the MISETA 1994 campaign. J Geophys Res Space Phys 101 (A12): 26851–26862. https://doi.org/10.1029/96ja00981. [CrossRef] [Google Scholar]
- Aarons, J, Mendillo M, Yantosca R. 1997. GPS phase fluctuations in the equatorial region during sunspot minimum. Radio Sci 32 (4): 1535–1550. https://doi.org/10.1029/97RS00664. [CrossRef] [Google Scholar]
- Aa, E, Huang W, Liu S, Ridley A, Zou S, et al. 2018. Midlatitude plasma bubbles over China and adjacent areas during a magnetic storm on 8 September 2017. Space Weather 16 (3): 321–331. https://doi.org/10.1002/2017SW001776. [CrossRef] [Google Scholar]
- Aa, E, Zou S, Ridley A, Zhang SR, Coster AJ, Erickson PJ, Liu S, Ren J 2019. Merging of storm time midlatitude traveling ionospheric disturbances and equatorial plasma bubbles, Space Weather 17 (2): 285–298. https://doi.org/10.1029/2018SW002101. [CrossRef] [Google Scholar]
- Abdu, MA, Batista IS, Walker GO, Sobral JHA, Trivedi NB, de Paula ER. 1995. Equatorial ionospheric electric field during magnetospheric disturbances: Local time/longitude dependences from recent EITS campaigns. J Atmos Terr Phys 57: 1065–1083. https://doi.org/10.1016/0021-9169(94)00123-6. [CrossRef] [Google Scholar]
- Abdu, MA, Batista IS, Takahashi H, MacDougall J, Sobral JH, Medeiros AF, Trivedi NB 2003. Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector. J Geophys Res Space Phys 108 (A12): 1449. https://doi.org/10.1029/2002JA009721. [CrossRef] [Google Scholar]
- Abdu, MA, Batista IS, Carrasco AJ, Brum CGM. 2005. South Atlantic magnetic anomaly ionization: A review and a new focus on electrodynamic effects in the equatorial ionosphere. J Atmos Solar-Terrestrial Phys 67: 1643–1657. https://doi.org/10.1016/j.jastp.2005.01.014. [CrossRef] [Google Scholar]
- Abdu, MA, De Paula ER, Batista IS, Reinisch BW, Matsuoka MT, et al. 2008. Abnormal evening vertical plasma drift and effects on ESF and EIA over Brazil-South Atlantic sector during the 30 October 2003 superstorm, J Geophys Res Space Phys l113 (7): A07313. https://doi.org/10.1029/2007JA012844. [CrossRef] [Google Scholar]
- Altadill, D, Segarra A, Blanch E, Juan JM, Paznukhov VV, Buresova D, Galkin G, Reinisch BW, Belehaki A. 2020. A method for real-time identification and tracking of traveling ionospheric disturbances using ionosonde data: First results. J Space Weather Space Clim 10: 2. https://doi.org/10.1051/swsc/2019042. [CrossRef] [EDP Sciences] [Google Scholar]
- Basu, S, Basu S, Mackenzie E, Whitney HE. 1985. Morphology of phase and intensity scintillations in the auroral oval and polar cap. Radio Sci 20 (3): 347–356. https://doi.org/10.1029/RS020i003p00347. [CrossRef] [Google Scholar]
- Basu, S, Basu S, Valladares CE, Yeh HC, Su SY, et al. 2001. Ionospheric effects of major magnetic storms during the International Space Weather Period of September and October 1999: GPS observations, VHF/UHF scintillations, and in situ density structures at middle and equatorial latitudes. J Geophys Res Space Phys 106 (A12): 30389–30413. https://doi.org/10.1029/2001ja001116. [CrossRef] [Google Scholar]
- Basu, S, Basu S, Groves KM, MacKenzie E, Keskinen MJ, Rich FJ. 2005. Near-simultaneous plasma structuring in the midlatitude and equatorial ionosphere during magnetic superstorms. Geophys Res Lett 32 (12). https://doi.org/10.1029/2004GL021678. [Google Scholar]
- Basu S, Basu Su, Rich FJ, Groves KM, MacKenzie E, Coker C, Sahai Y, Fagundes PR, Becker-Guedes F. 2007. Response of the equatorial ionosphere at dusk to penetration electric fields during intense magnetic storms. J Geophys Res Space Phys 112(8): A08308. https://doi.org/10.1029/2006JA012192. [CrossRef] [Google Scholar]
- Burke, WJ, Gentile LC, Huang CY, Valladares CE, Su SY. 2004. Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1. J Geophys Res Space Phys 109: A12301. https://doi.org/10.1029/2004JA010583. [CrossRef] [Google Scholar]
- Campuzano, SA, Delgado-Gómez F, Migoya-Orué Y, Rodríguez-Caderot G, Herraiz-Sarachaga M, Radicella SM. 2023. Study of ionosphere irregularities over the Iberian Peninsula during two moderate geomagnetic storms using GNSS and ionosonde observations. Atmosphere 14 (2): 233. https://doi.org/10.3390/atmos14020233. [CrossRef] [Google Scholar]
- Carrano, CS, Groves KM, Caton RG, Rino CL, Straus PR. 2011. Multiple phase screen modeling of ionospheric scintillation along radio occultation raypaths. Radio Sci. 46 (3): RS0D07. https://doi.org/10.1029/2010RS004591. [CrossRef] [Google Scholar]
- Cherniak, I, Krankowski A, Zakharenkova I. 2014. Observation of the ionospheric irregularities over the Northern Hemisphere: Methodology and service. Radio Sci. 49 (8): 653–662. https://doi.org/10.1002/2014RS005433. [CrossRef] [Google Scholar]
- Cherniak, I, Zakharenkova I. 2016. First observations of super plasma bubbles in Europe. Geophys Res Lett. 43 (21): 11137–11145. https://doi.org/10.1002/2016GL071421. [CrossRef] [Google Scholar]
- Cherniak, I, Krankowski A, Zakharenkova I. 2018. ROTI Maps: a new IGS ionospheric product characterizing the ionospheric irregularities occurrence. GPS Solut 22: 69. https://doi.org/10.1007/s10291-018-0730-1. [CrossRef] [Google Scholar]
- Cherniak, I, Zakharenkova I, Sokolovsky S. 2019. Multi-instrumental observation of storm-induced ionospheric plasma bubbles at equatorial and middle latitudes. J Geophys Res Space Phys 124 (3): 1491–1508. https://doi.org/10.1029/2018JA026309. [CrossRef] [Google Scholar]
- Cherniak, I, Zakharenkova I. 2022. Development of the storm-induced ionospheric irregularities at equatorial and middle latitudes during the 25–26 August 2018 geomagnetic storm. Space Weather 20 (2): e2021SW002891. https://doi.org/10.1029/2021SW002891. [CrossRef] [Google Scholar]
- Dymond, KF. 2012. Global observations of L band scintillation at solar minimum made by COSMIC. Radio Sci. 47 (3): RS0L18. https://doi.org/10.1029/2011RS004931. [CrossRef] [Google Scholar]
- Eastes, RW, Solomon SC, Daniell RE, Anderson DN, Burns AG, England SL, Martinis CR, McClintock WE. 2019. Global-scale observations of the equatorial ionization anomaly. Geophys Res Lett 46 (16): 9318–9326. https://doi.org/10.1029/2019GL084199. [CrossRef] [Google Scholar]
- FAA GPS Performance Analysis Reports. 2017. Report #99, Table 6‐1. https://www.nstb.tc.faa.gov/reports/PAN99_1017.pdf. Accessed 20 June 2024. [Google Scholar]
- Fejer, BG, Scherliess L, de Paula ER. 1999. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J Geophys Res Space Phys 104 (A9): 19859–19869. https://doi.org/10.1029/1999ja900271. [CrossRef] [Google Scholar]
- Foster, JC, Erickson PJ. 2013. Ionospheric superstorms: Polarization terminator effects in the Atlantic sector. J Atmos Solar-Terrestrial Phys 103: 147–156. https://doi.org/10.1016/j.jastp.2013.04.001. [CrossRef] [Google Scholar]
- Fremouw, EJ, Leadabrand RL, Livingston RC, Cousins MD, Rino CL, Fair BC, Long RA. 1978. Early results from the DNA Wideband satellite experiment – Complex‐signal scintillation, Radio Sci 13 (1): 167–187. https://doi.org/10.1029/RS013i001p00167. [CrossRef] [Google Scholar]
- Gjerloev JW. 2012. The SuperMAG data processing technique. J Geophys Res 117: A09213. https://doi.org/10.1029/2012JA017683. [Google Scholar]
- Haerendel, G. 1974. Theory of equatorial spread F. preprint. Max‐Planck Inst. für Extraterr. Phys., Munich, Germany. [Google Scholar]
- Heelis, RA, Stoneback RA, Perdue MD, Depew MD, Morgan WA, Mankey MW, et al. 2017. Ion velocity measurements for the ionospheric connections explorer. Space Sci Rev 212 (1–2): 615–629. https://doi.org/10.1007/s11214-017-0383-3. [CrossRef] [Google Scholar]
- Huang, CS, Foster JC, Kelley MC. 2005. Long-duration penetration of the interplanetary electric field to the low-latitude ionosphere during the main phase of magnetic storms. J Geophys Res Space Phys 110: A11309. https://doi.org/10.1029/2005JA011202. [Google Scholar]
- Huang, CS, Foster JC, Sahai Y. 2007. Significant depletions of the ionospheric plasma density at middle latitudes: A possible signature of equatorial spread F bubbles near the plasmapause, J Geophys Res Space Phys 112 (5): A05315. https://doi.org/10.1029/2007JA012307. [Google Scholar]
- Huang, CS, Rich FJ, Burke WJ. 2010. Storm time electric fields in the equatorial ionosphere observed near the dusk meridian. J Geophys Res Space Phys 115: A08313. https://doi.org/10.1029/2009JA015150. [Google Scholar]
- Huang, CS, La Beaujardiere OD, Roddy PA, Roddy PA, Hunton DE, Pfaff RF, Valladares CE, Ballenthin JO 2011. Evolution of equatorial ionospheric plasma bubbles and formation of broad plasma depletions measured by the C/NOFS satellite during deep solar minimum. J Geophys Res 116: A03309. https://doi.org/10.1029/2010JA015982. [CrossRef] [Google Scholar]
- Huang, CS, De La Beaujardiere O, Roddy PA, Hunton DE, Ballenthin JO, Hairston MR. 2013. Long-lasting daytime equatorial plasma bubbles observed by the C/NOFS satellite. J Geophys Res Space Phys 118 (5): 2398–2408. https://doi.org/10.1002/jgra.50252. [CrossRef] [Google Scholar]
- Huang, CS. 2023. Identification of penetration and disturbance dynamo electric fields and their effects on the generation of equatorial plasma bubbles, J Geophys Res Space Phys 128: e2023JA031766. https://doi.org/10.1029/2023JA031766. [CrossRef] [Google Scholar]
- Hysell DL. 2000. An overview and synthesis of plasma irregularities in equatorial spread F. J Atmos Solar-Terrestrial Phys 62 (12): 1037–1056. https://doi.org/10.1016/s1364-6826(00)00095-x. [CrossRef] [Google Scholar]
- Katamzi-Joseph, ZT, Habarulema JB, Hernández-Pajares M. 2017. Midlatitude postsunset plasma bubbles observed over Europe during intense storms in April 2000 and 2001. Space Weather 15 (9): 1177–1190. https://doi.org/10.1002/2017SW001674. [CrossRef] [Google Scholar]
- Kelley, M. 1989. The Earth’s ionosphere. Academic Press: San Diego, p. 487, [Google Scholar]
- Kintner, PM, Ledvina BM, De Paula ER, Kantor IJ. 2004. Size, shape, orientation, speed, and duration of GPS equatorial anomaly scintillations. Radio Sci 39 (2): RS2012. https://doi.org/10.1029/2003rs002878. [CrossRef] [Google Scholar]
- Ko, CP, Yeh HC. 2010. COSMIC/FORMOSAT-3 observations of equatorial F region irregularities in the SAA longitude sector. J Geophys Res Space Phys 115 (11): A11309. https://doi.org/10.1029/2010JA015618. [CrossRef] [Google Scholar]
- Li, G, Ning B, Zhao B, Liu L, Wan W, Ding F, Xu JS, Liu JY, Yumoto K. 2009. Characterizing the 10 November 2004 storm-time middle-latitude plasma bubble event in Southeast Asia using multi-instrument observations. J Geophys Res Space Phys 114 (7): A07304. https://doi.org/10.1029/2009JA014057. [Google Scholar]
- Li, G, Ning B, Wang C, Abdu MA, Otsuka Y, Yamamoto M, Wu J, Chen J. 2018. Storm-enhanced development of postsunset equatorial plasma bubbles around the meridian 120 E/60 W on 7–8 September 2017, J Geophys Res Space Phys 123 (9): 7985–7998. https://doi.org/10.1029/2018JA025871. [CrossRef] [Google Scholar]
- Ludwig-Barbosa, V, Rasch J, Sievert T, Carlstroem A, Pettersson MI, Vu VT, Christensen J. 2023. Detection and localization of F-layer ionospheric irregularities with the back-propagation method along the radio occultation ray path. Atmos Meas Tech 16: 1849–1864. https://doi.org/10.5194/amt-16-1849-2023. [CrossRef] [Google Scholar]
- Ma, G, Maruyama T. 2006. A super bubble detected by dense GPS network at east Asian longitudes. Geophys Res Lett 33 (21): L21103. https://doi.org/10.1029/2006GL027512. [CrossRef] [Google Scholar]
- Martinis, C, Baumgardner J, Mendillo M, Wroten J, Coster A, Paxton L. 2015. The night when the auroral and equatorial ionospheres converged. J Geophys Res Space Phys 120: 8085–8095. https://doi.org/10.1002/2015JA021555. [CrossRef] [Google Scholar]
- Matzka, J, Bronkalla O, Tornow K, Elger K, Stolle C. 2021. Geomagnetic Kp index. V. 1.0. GFZ Data Services. https://doi.org/10.5880/Kp.0001. [Google Scholar]
- Mrak, S, Semeter J, Nishimura Y, Rodrigues FS, Coster AJ, Groves K. 2020. Leveraging geodetic GPS receivers for ionospheric scintillation science. Radio Sci 55 (11): e2020RS007131. https://doi.org/10.1029/2020RS007131. [CrossRef] [Google Scholar]
- Mukherjee, GK, Carlo L, Mahajan SH, Patil PT. 1998. First results of all‐sky imaging from India. Earth Planet Space 50 (2): 119–127. https://doi.org/10.1186/BF03352093. [CrossRef] [Google Scholar]
- Nishimura, Y, Mrak S, Semeter JL, Coster AJ, Jayachandran PT, Groves KM, Knudsen DJ, Nishitani N, Ruohoniemi JM. 2021. Evolution of mid‐latitude density irregularities and scintillation in North America during the 7–8 September 2017 storm. J Geophys Res Space Phys 126: e2021JA029192. https://doi.org/10.1029/2021ja029192. [CrossRef] [Google Scholar]
- Pi, X, Mannucci AJ, Lindqwister UJ, Ho CM. 1997. Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys Res Lett 24 (18): 2283–2286. https://doi.org/10.1029/97GL02273. [CrossRef] [Google Scholar]
- Reinisch, BW, Galkin IA. 2011. Global ionospheric radio observatory (GIRO). Earth Planet Space 63 (4): 377–381. https://doi.org/10.5047/eps.2011.03.001. [CrossRef] [Google Scholar]
- Reinisch, B, Galkin I, Belehaki A, Paznukhov V, Huang X, Paznukhov V, Huang X, et al. 2018. Pilot ionosonde network for identification of traveling ionospheric disturbances. Radio Sci 53 (3): 365–378. https://doi.org/10.1002/2017RS006263. [CrossRef] [Google Scholar]
- Rodrigues, FS, Socola JG, Moraes AO, Martinis C, Hickey DA. 2021. On the properties of and ionospheric conditions associated with a mid-latitude scintillation event observed over southern United States. Space Weather 19 (6): e2021SW002744. https://doi.org/10.1029/2021SW002744. [CrossRef] [Google Scholar]
- Sokolovskiy, S, Schreiner W, Rocken C, Hunt D. 2002. Detection of high‐altitude ionospheric irregularities with GPS/MET. Geophys Res Lett 29 (3): https://doi.org/10.1029/2001GL013398. [CrossRef] [Google Scholar]
- Sun, W, Li G, Lei J, Zhao B, Hu L, et al.. 2023. Ionospheric super bubbles near sunset and sunrise during the 26–28 February 2023 geomagnetic storm. J Geophys Res Space Phys 128 (11): e2023JA031864. https://doi.org/10.1029/2023JA031864. [CrossRef] [Google Scholar]
- Sun, W, Li G, Zhang SR, Hu L, Dai G, Zhao B, Otsuka Y, et al. 2024. Regional ionospheric super bubble induced by significant upward plasma drift during the 1 December 2023 geomagnetic storm. J Geophys Res Space Phys 129 (6): e2024JA032430. https://doi.org/10.1029/2024JA032430. [CrossRef] [Google Scholar]
- Tsunoda, RT, Livingston RC, McClure JP, Hanson WB. 1982. Equatorial plasma bubbles: Vertically elongated wedges from the bottomside F layer. J Geophys Res 87: 9171. https://doi.org/10.1029/ja087ia11p09171. [CrossRef] [Google Scholar]
- Upper Atmosphere Physics and Radiopropagation Working Group, Cesaroni C, De Franceschi G, Marcocci C, Pica E, Romano V, Spogli L. 2020. Electronic Space Weather upper atmosphere (eSWua) Database – GNSS scintillation data, Version 1.0, August 1, 2020. Istituto Nazionale di Geofisica e Vulcanologia (INGV). Available at https://doi.org/10.13127/ESWUA/GNSS. [Google Scholar]
- Weiss, JP, Schreiner WS, Braun JJ, Xia-Serafino W, Huang CY. 2022. COSMIC-2 mission summary at three years in orbit. Atmosphere 13: 1409. https://doi.org/10.3390/atmos13091409. [CrossRef] [Google Scholar]
- Woodman, R, La Hoz C. 1976. Radar observations of F region equatorial irregularities. J Geophys Res. 81 (31): 5447–5466. https://doi.org/10.1029/JA081i031p05447. [CrossRef] [Google Scholar]
- Wu, Q, Pedatella NM, Braun JJ, Schreiner W, Weiss J, Chou MY, et al. 2022. Comparisons of ion density from IVM with the GNSS differential TEC-derived electron density on the FORMOSAT-7/COSMIC-2 mission. J Geophys Res Space Phys 127 (8): e2022JA030392. https://doi.org/10.1029/2022JA030392. [CrossRef] [Google Scholar]
- Wu, Q, Braun J, Sokolovskiy S, Schreiner W, Pedatella N, Weiss JP, Cherniak I, Zakharenkova I 2024. GOLD plasma bubble observations comparison with geolocation of plasma irregularities by back propagation of the high-rate FORMOSA7/COSMIC 2 scintillation data. Front Astron Space Sci 11: 1407457. https://doi.org/10.3389/fspas.2024.1407457. [CrossRef] [Google Scholar]
- Xiong, C, Park J, Lühr H, Stolle C, Ma SY. 2010. Comparing plasma bubble occurrence rates at CHAMP and GRACE altitudes during high and low solar activity. Ann Geophys 28 (9): 1647–1658. https://doi.org/10.5194/angeo-28-1647-2010. [CrossRef] [Google Scholar]
- Zakharenkova I, Astafyeva E, Cherniak I. 2016. GPS and GLONASS observations of large-scale traveling ionospheric disturbances during the 2015 St. Patrick’s Day storm. J Geophys Res Space Phys 121 (12): 12138–12156. https://doi.org/10.1002/2016JA023332. [CrossRef] [Google Scholar]
- Zakharenkova, I, Cherniak I. 2020. When plasma streams tie up equatorial plasma irregularities with auroral ones. Space Weather 18 (2): e2019SW002375. https://doi.org/10.1029/2019SW002375. [CrossRef] [Google Scholar]
- Zakharenkova, I, Cherniak I. 2021. Effects of storm-induced equatorial plasma bubbles on GPS-based kinematic positioning at equatorial and middle latitudes during the September 7–8, 2017, geomagnetic storm. GPS Solut. 25 (4): https://doi.org/10.1007/s10291-021-01166-3. [CrossRef] [Google Scholar]
- Zakharenkova, I, Cherniak I, Braun JJ, Wu Q. 2023. Global maps of equatorial plasma bubbles depletions based on FORMOSAT-7/COSMIC-2 ion velocity meter plasma density observations. Space Weather 21 (5): e2023SW003438. https://doi.org/10.1029/2023SW003438. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.