Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
|
|
---|---|---|
Article Number | 12 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/swsc/2025005 | |
Published online | 08 April 2025 |
- Aalami, DD, Jones AR. 2009. A low-noise ASIC electrometer for precision low-current measurements. Proc SPIE 7438: 743816. https://doi.org/10.1117/12.826445. [CrossRef] [Google Scholar]
- Arp, U, Clark C, Farrell A, Fein E, Furst M, Hagley E. 2002. Synchrotron ultraviolet radiation facility SURF III. Rev Scientific Instrum 73 (3): 1674–1676. https://doi.org/10.1063/1.1445833. [CrossRef] [Google Scholar]
- Bevington, PR, Robinson DK. 2003. Data reduction and error analysis for the physical sciences. McGraw-Hill, United States. ISBN 0-07-247227-8. [Google Scholar]
- Brueckner, GE, Edlow KL, Floyd LE, Lean JL, VanHoosier ME. 1993. The Solar Ultraviolet Spectral Irradiance Monitor (SUSlM) experiment on board the Upper Atmospheric Research Satellite, J Geophys Res 98: 10695–10711. https://doi.org/10.1029/93JD00410. [CrossRef] [Google Scholar]
- Burrows, JP, Weber M, Buchwitz M, Rozonav V, Ladstatter-Weissenmayer A, et al. 1999. The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results. J Atmos Sci 56 (2): 151–175. https://doi.org/10.1175/1520-0469. [CrossRef] [Google Scholar]
- Chamberlin, PC, Eparvier FG, Knoer V, Leise H, Pankratz A, Snow M, Templeman B, Thiemann EMB, Woodraska DL, Woods TN. 2020. Flare Irradiance Spectral Model-Version 2 (FISM2). Space Weather 18 (12): e2020SW002588. https://doi.org/10.1029/2020SW002588. [CrossRef] [Google Scholar]
- Coddington, O, Lean JL, Pilewskie P, Snow M, Lindholm D. 2016. A solar irradiance climate data record. Bull Am Meteorol Soc 97 (7): 1265–1282. https://doi.org/10.1175/BAMS-D-14-00265.1. [CrossRef] [Google Scholar]
- Coddington, O, Lean J, Pilewskie P, Snow M, Richard E, et al. 2019. Solar irradiance variability: comparisons of models and measurements. Earth Space Sci 6 (12): 2525–2555. https://doi.org/10.1029/2019EA000693. [CrossRef] [Google Scholar]
- Deland, MT, Cebula RP. 1994. Comparison of the Mg II index products from the NOAA 9 and NOAA 11 SBUV/2 instruments. Sol Phys 152 (61): 61–68. https://doi.org/10.1007/BF01473184. [CrossRef] [Google Scholar]
- De Pontieu, B, Title AM, Lemen JR, Kushner GD, Akin JD, et al. 2014. The Interface Region Imaging Spectrograph (IRIS). Sol Phys 289: 2733–2779. https://doi.org/10.1007/s11207-014-0485. [CrossRef] [Google Scholar]
- De Toma, G, White OR, Knapp BG, Rottman GR, Woods TN. 1997. Mg II core-to-wing index: comparison of SBUV2 and SOLSTICE time series. J Geophys Res 102 (A2): 2597–2610. https://doi.org/10.1029/96jA03342. [CrossRef] [Google Scholar]
- Dudok de Wit, T, Kretzschmar M, Lilensten J, Woods T. 2009. Finding the best proxies for the solar UV irradiance. Geophys Res Lett 36: L10107. https://doi.org/10.1029/2009GL037825. [CrossRef] [Google Scholar]
- Eparvier, FG, Jones AR, Chamberlin PC, Woods TN, McClintock WE, Snow M. 2009. The extreme ultraviolet sensor (EUVS) for GOES-R. Proc SPIE 7438: 4-1–4-8. https://doi.org/10.1117/12.826445. [Google Scholar]
- Ghosh, A, Chatterjee S, Khan AR, Tripathi D, Ramaprakash AN, et al. 2016. The Solar Ultraviolet Imaging Telescope onboard Aditya-L1. Proc SPIE 9905: 11. https://doi.org/10.1117/12.2232266. [Google Scholar]
- Hall, LA, Anderson GP. 1988. Instrumental effects on a proposed Mg II index of solar activity. Ann Geophys 6: 531–534. https://doi.org/10.1029/93JD00421. [Google Scholar]
- Hall, LA, Anderson GP. 1991. High resolution solar spectrum between 2000 and 3100 A. J Geophys Res 96: 12927–12931. https://doi.org/10.1029/91JD01111. [CrossRef] [Google Scholar]
- Heath DF, Schlesinger BM. 1986. The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance. J Geophys Res 91 (8):8672–8682. https://doi.org/10.1029/JD091iD08p08672. [CrossRef] [Google Scholar]
- Kayshap, P, Tripath D, Solanki SK, Peter H. 2018. Quiet-Sun and coronal hole in Mg II k line as observed by IRIS. Astrophys J 864 (21): 12. https://doi.org/10.3847/1538-4357/aad2d9. [Google Scholar]
- Lean JL, Rottman GJ, Lee K, Woods TN, Hickey JR, Puga LC.. 1997. Detection and parameterization of variations in solar mid- and near-ultraviolet radiation (200–400 nm). J Geophys Res 102:29939–29956. https://doi.org/10.1029/97JD02092. [CrossRef] [Google Scholar]
- Lean, JL, Coddington O, Marchenko SV, DeLand MT. 2020. A new model of solar ultraviolet irradiance variability with 0.1–0.5 nm spectral resolution. Earth Space Sci 9 (10): e2021EA002211. https://doi.org/10.1029/2019EA000645. [Google Scholar]
- Machol, J, Eparvier F, Viereck R, Woodraska D, Snow M, et al. 2020. GOES-R series solar X-ray and Ultraviolet Irradiance. In: Goodman S, Schmit T, Daniels J, Redmon RJ (Eds.), The GOES-R Series: A new generation of geostationary environmental satellites. Elsevier, Amsterdam, pp. 233–242. https://doi.org/10.1016/B978-0-12-814327-8.00019-6. [Google Scholar]
- Marchenko, SV, Woods TN, DeLand MT, Mauceri S, Pilewskie P, Haberreiter M. 2019. Improved Aura/OMI solar spectral irradiance: comparisons with independent datasets and model predictions. Earth Space Sci 6: 2379–2396. https://doi.org/0.1029/2019EA000624. [NASA ADS] [CrossRef] [Google Scholar]
- McClintock, WE, Rottman GJ, Woods TN. 2005. SOLar STellar Irradiance Comparison Experiment II (SOLSTICE II): instrument concept and design. Sol Phys 230: 225–258. https://doi.org/10.1007/s11207-005-7432-x. [CrossRef] [Google Scholar]
- McClintock, WE, Rusch DW, Thomas GE, Merkel AW, Lankton MR, Drake VA, Bailey SM, Russell JM, III. 2009. The cloud imaging and particle size experiment on the aeronomy of ice in the mesosphere mission: Instrument concept, design, calibration, and on-orbit performance. J Atmos Solar-Terr Phys 71: 340. https://doi.org/10.1016/j.jastp.2008.10.011. [CrossRef] [Google Scholar]
- McClintock, WE, Snow M, Eden TD, Eparvier FG, Machol JL, Woodraska DL. 2025. High precision, high time-cadence measurements of the MgII Index of solar activity by the GOES-R Extreme Ultraviolet Irradiance Sensor 2: initial flight performance. J Space Weather Space Clim 15: 11. https://doi.org/10.1051/swsc/2025006. [CrossRef] [EDP Sciences] [Google Scholar]
- Otter, G, Dijkhuizen N, Vosteen A, Brinkers S, Gür B, Kenter P, et al.. 2017. On-ground re-calibration of the GOME-2 Satellite Spectrometer Series. SPIE 10564: 105643G. https://doi.org/10.1117/12.2309063. [Google Scholar]
- Pollock, RE. 1977. Indiana university cyclotron facility – the first year of operation. IEEE Trans Nuc Sci 24 (3): 1505–1508. [CrossRef] [Google Scholar]
- Richard, E, Coddington O, Harber D, Chambliss M, Penton S, et al. 2024. Advancements in solar spectral irradiance measurements by the TSIS-1 spectral irradiance monitor and its role for long-term data continuity. J Space Weather Space Clim 14: 10. https://doi.org/10.1051/swsc/2024008. [CrossRef] [EDP Sciences] [Google Scholar]
- Richard, E, Harber D, Rutkowski J, O’Malia K, Triplett M, et al. 2012. Future long-term measurements of solar spectral irradiance by the TSIS spectral irradiance monitor: improvements in measurement accuracy and stability. In: Ikonen E, Park S (Eds.), Proceedings 11th International Conference on New Developments and Applications in Optical Radiometry, Vol. 49: Metrologia. Maui, HI, USA, pp. 5–6. [Google Scholar]
- Richard, E, Harber D, Coddington O, Drake G, Rutkowski J, Triplett M, Pilewskie P, Woods T. 2020. SI-traceable spectral irradiance radiometric characterization and absolute calibration of the TSIS-1 Spectral Irradiance Monitor (SIM). Remote Sens 12: 1818–1845. https://doi.org/10.3390/rs12111818. [CrossRef] [Google Scholar]
- Rottman, GR, Woods TN, Sparn TP. 1993. Solar stellar irradiance comparison experiment I: 1 instrument design and operation. J Geophys Res 98 (10): 10679–10694. https://doi.org/10.1029/93JD00463. [CrossRef] [Google Scholar]
- Rottman, GR. 2005. The SORCE mission. Sol Phys 230: 7–25. https://doi.org/10.1007/s11207-005-8112-6. [CrossRef] [Google Scholar]
- Snow, M, McClintock WE, Woods TN, White OR, Harder JW. 2005. SOLar STellar Irradiance Comparison Experiment II (SOLSTICE II): The Mg II Index from SORCE. Sol Phys 230: 325–https://doi.org/10.1007/s11207-005-6879-0. [CrossRef] [Google Scholar]
- Snow, M, McClintock WE. 2005. High time cadence solar magnesium II index monitor. Proc SPIE 5901: 354. https://doi.org/10.1117/12.617044. [Google Scholar]
- Snow M, McClintock WE, Crotser D, Eparvier FG. 2009. EUVS-C: the measurement of the Magnesium II Index for GOES-R EXIS. Proc SPIE 7438: 743803. https://doi.org/10.1117/12.828566. [CrossRef] [Google Scholar]
- Snow, M, Weber M, Machol J, Viereck R, Richard E. 2014. Comparison of Magnesium II core-to-wing ratio observations during solar minimum 23/24. J Space Weather Space Clim 4: A04. https://doi.org/10.1051/swsc/2014001. [CrossRef] [EDP Sciences] [Google Scholar]
- Snow, M, Machol J, Eparvier F, Jones A, McClintock W, Woods T. 2018. Magnesium II index measurements from SORCE SOLSTICE and GOES-16 EUVS. Proc Int Astron Union 13 (S340): 167–168. https://doi.org/10.1017/S174392131800128X. [CrossRef] [Google Scholar]
- Snow, M, Machol J, Viereck R, Woods T, Weber M, Woodraska D, Elliott J. 2019. A revised Magnesium II core-to-wing ratio from SORCE SOLSTICE. Earth Space Sci 2: 2106–2114. https://doi.org/10.1029/2019EA000652. [CrossRef] [Google Scholar]
- Snow, M, McClintock WE, Woods TN, Elliott JP. 2022. SOLar-Stellar Irradiance Comparison Experiment II (SOLSTICE II): End-of-mission validation of the SOLSTICE technique. Sol Phys 297. 55. https://doi.org/10.1007/s11207-022-10984-9. [CrossRef] [Google Scholar]
- Thuillier, G, Bruinsma S. 2001. The Mg II index for upper atmosphere modelling. Ann Geophys 19: 219. https://doi.org/10.5194/angeo-19-219-2001. [Google Scholar]
- Viereck, RA, Puga LC, McMullin D, Judge D, Weberand M, Tobiska WK. 2001. The Mg II index: a proxy for solar EUV. Geophys Rev Lett 28 (7): 1343–1346. https://doi.org/10.1029/2000GL012551. [CrossRef] [Google Scholar]
- Viereck, R, Floyd L, Crane P, Woods T, Knapp B, Rottman G, Weber M, Puga L, DeLand M. 2004. A composite Mg II index spanning from 1978 to 2003. Space Weather 2: S10005. https://doi.org/10.1029/2004SW000084. [NASA ADS] [CrossRef] [Google Scholar]
- White, OR, De Toma G, Rottman GJ, Woods TN, Knapp BG. 1998. Effect of spectral resolution on the Mg II Index as measure of solar variability. Sol Phys 177: 89–103. https://doi.org/10.1007/978-94-011-5000-2_7. [CrossRef] [Google Scholar]
- Wintoft, P. 2011. The variability of solar EUV: A multiscale comparison between sunspot number, 10.7 cm flux, LASP MgII index, and SOHO/SEM EUV flux. J Atmos Sol-Terr Phys 73 (13): 1708–1714. https://doi.org/10.1016/j.jastp.2011.03.009. [CrossRef] [Google Scholar]
- Woods, TN, Eparvier FG, Hock H, Jones AR, Woodraska D, et al. 2012. Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): overview of science objectives, instrument design, data products, and model developments. Sol Phys 275: 115–143. https://doi.org/10.1007/s11207-009-9487-6. [Google Scholar]
- Woods, TN, Eparvier FG, Harder J, Snow M. 2018. Decoupling solar variability and instrument trends using the Multiple Same-Irradiance-Level (MuSIL) analysis technique. Sol Phys 293 (5): 76–96. https://doi.org/10.1007/s11207-018-1294-5. [CrossRef] [Google Scholar]
- Woods, TN, Eden E, Eparvier FG, Jones AR, Woodraska DL, Chamberlin PC, Machol JL. 2024. GOES-R Series X-Ray Sensor (XRS): 1. design and pre-flight calibration. J Geophys Res Space Phys 129 (11): e2024JA032925. https://doi.org/10.1029/2024JA032925. [CrossRef] [Google Scholar]
- Yeo, KL, Krivova NA, Solanki SK. 2017. EMPIRE: A robust empirical reconstruction of solar irradiance variability. J Geophys Res Space Phys 122 (4): 3888–3914. https://doi.org/10.1002/2016JA023733. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.