Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
|
|
---|---|---|
Article Number | 13 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2025009 | |
Published online | 08 April 2025 |
- Abel, B, Thorne RM. 1998. Electron scattering loss in Earth’s inner magnetosphere: 1. Dominant physical processes. J Geophys Res Space Phys 103(A2): 2385–2396. https://doi.org/10.1029/97JA02919. [CrossRef] [Google Scholar]
- Abel, B, Thorne RM, Vampola AL. 1994. Solar cyclic behavior of trapped energetic electrons in Earth’s inner radiation belt. J Geophys Res Space Phys 99(A10): 19427–19431. https://doi.org/10.1029/94JA01626. [CrossRef] [Google Scholar]
- Anderson, BR, Millan RM, Reeves GD, Friedel RHW. 2015. Acceleration and loss of relativistic electrons during small geomagnetic storms. Geophys Res Lett 42(23): 10113–10119. https://doi.org/10.1002/2015GL066376. [Google Scholar]
- Baker, DN, Jaynes AN, Kanekal SG, Foster JC, Erickson PJ, et al. 2016. Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015. J Geophys Res Space Phys 121(7): 6647–6660. https://doi.org/10.1002/2016JA022502. [CrossRef] [Google Scholar]
- Beutier, T, Boscher D. 1995. A three-dimensional analysis of the electron radiation belt by the Salammbô code. J Geophys Res Space Phys 100(A8): 14853–14861. https://doi.org/10.1029/94JA03066. [CrossRef] [Google Scholar]
- Beutier, T, Boscher D, France M. 1995. SALAMMBO: A three-dimensional simulation of the proton radiation belt. J Geophys Res Space Phys 100(A9): 17181–17188. https://doi.org/10.1029/94JA02728. [CrossRef] [Google Scholar]
- Boscher, D, Bourdarie S, Maget V, Sicard-Piet A, Rolland G, Standarovski D. 2018. High-energy electrons in the inner zone. IEEE Trans Nuclear Sci 65(8): 1546–1552. https://doi.org/10.1109/TNS.2018.2824543. [CrossRef] [Google Scholar]
- Boscher, D, Bourdarie S, O’Brien P, Guild T, Heynderickx D, et al. 2022. PRBEM/IRBEM: v5.0.0. https://doi.org/10.5281/zenodo.6867768. [Google Scholar]
- Bourdarie, SA, Maget VF. 2012. Electron radiation belt data assimilation with an ensemble Kalman filter relying on the Salammbô code. 30: 929–943. https://doi.org/10.5194/angeo-30-929-2012. [Google Scholar]
- Bourdarie, S, Xapsos M. 2008. The near-Earth space radiation environment. IEEE Trans Nuclear Sci 55(4): 1810–1832. https://doi.org/10.1109/TNS.2008.2001409. [CrossRef] [Google Scholar]
- Bourdarie, S, Friedel RHW, Fennell J, Kanekal S, Cayton TE. 2005. Radiation belt representation of the energetic electron environment: Model and data synthesis using the Salammbô radiation belt transport code and Los Alamos geosynchronous and GPS energetic particle data. Space Weather 3(4). https://doi.org/10.1029/2004SW000065. [CrossRef] [Google Scholar]
- Bourdarie, S, Sicard-Piet A, Friedel R, O’Brien TP, Cayton T, Blake B, Boscher D, Lazaro D. 2009. Outer Electron Belt Specification Model. IEEE Trans Nuclear Sci 56(4): 2251–2257. https://doi.org/10.1109/TNS.2009.2014844. [CrossRef] [Google Scholar]
- Brunet, A, Dahmen N, Katsavrias C, Santolik O, Bernoux G, et al. 2023. Improving the electron radiation belt nowcast and forecast using the safespace data assimilation modeling pipeline. Space Weather 21(8): e2022SW003377. https://doi.org/10.1029/2022SW003377. [CrossRef] [Google Scholar]
- Caron, P, Bourdarie S, Falguere D, Lazaro D, Bourdoux P, et al. 2022. In-flight measurements of radiation environment observed by Eutelsat 7C (Electric Orbit Raising Satellite). IEEE Trans Nuclear Sci 69(7): 1527–1532. https://doi.org/10.1109/TNS.2022.3158470. [CrossRef] [Google Scholar]
- Caron, P, Bourdarie S, Sicard A, Carron J, Calaprice M, et al. 2024. In-flight measurements of radiation environment observed by Hotbird 13F and Hotbird 13G (Electric Orbit Raising Satellites). IEEE Trans Nuclear Sci 71: 1535–1541. https://doi.org/10.1109/TNS.2024.3367730. [CrossRef] [Google Scholar]
- Carpenter, DL, Anderson RR. 1992. An ISEE/whistler model of equatorial electron density in the magnetosphere. J Geophys Res Space Phys 97(A2): 1097–1108. https://doi.org/10.1029/91JA01548. [CrossRef] [Google Scholar]
- Cervantes, S, Shprits YY, Aseev NA, Allison HJ. 2020. Quantifying the effects of EMIC Wave scattering and magnetopause shadowing in the outer electron radiation belt by means of data assimilation. J Geophys Res Space Phys 125(8): e2020JA028208. https://doi.org/10.1029/2020JA028208. [CrossRef] [Google Scholar]
- Dahmen, N, Rogier F, Maget V. 2020. On the modelling of highly anisotropic diffusion for electron radiation belt dynamic codes. Computer Physics Communications 254: 107342. https://doi.org/10.1016/j.cpc.2020.107342. [Google Scholar]
- Dahmen, N, Sicard A, Brunet A, Santolik O, Pierrard V, Botek E, Darrouzet F, Katsavrias C. 2022. FARWEST: Efficient computation of wave-particle interactions for a dynamic description of the electron radiation belt diffusion. J Geophys Res Space Phys 127(10): e2022JA030518. https://doi.org/10.1029/2022JA030518. [CrossRef] [Google Scholar]
- Dahmen, N, Brunet A, Bourdarie S, Katsavrias C, Bernoux G, et al. 2023. Electron radiation belt safety indices based on the SafeSpace modelling pipeline and dedicated to the internal charging risk. Ann Geophys 41(2): 301–312. https://doi.org/10.5194/angeo-41-301-2023. [Google Scholar]
- Dahmen, N, Sicard A, Brunet A. 2024. Climate reanalysis of electron radiation belt long-term dynamics, using a dedicated numerical scheme. IEEE Transactions on Nuclear Science 71: 1598–1605. https://doi.org/10.1109/TNS.2024.3368014. [CrossRef] [Google Scholar]
- Evans, H, Bühler P, Hajdas W, Daly E, Nieminen P, Mohammadzadeh A. 2008. Results from the ESA SREM monitors and comparison with existing radiation belt models. Adv Space Res 42(9): 1527–1537. https://doi.org/10.1016/j.asr.2008.03.022. [Google Scholar]
- Evensen, G. 2003. The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn 53: 343–367. https://doi.org/10.1007/s10236-003-0036-9. [CrossRef] [Google Scholar]
- Ginet, GP, O’Brien TP, Huston SL, Johnston WR, Guild TB, et al. 2014. AE9, AP9 and SPM: New models for specifying the trapped energetic particle and space plasma environment. In: The Van Allen Probes Mission, N, Fox, Burch JL (Eds.), Springer, Boston, MA, USA, pp. 579–615. [Google Scholar]
- Glauert, SA, Horne RB, Meredith NP. 2018. A 30-year simulation of the outer electron radiation belt. Space Weather 16(10): 1498–1522. https://doi.org/10.1029/2018SW001981. [CrossRef] [Google Scholar]
- Goldstein, J, Angelopoulos V, De Pascuale S, Funsten HO, Kurth WS, et al. 2017. Cross-scale observations of the 2015 St. Patrick’s day storm: THEMIS, Van Allen Probes, and TWINS. J Geophys Res Space Phys 122(1): 368–392. https://doi.org/10.1002/2016JA023173. [CrossRef] [Google Scholar]
- Gubby, R, Evans J. 2002. Space environment effects and satellite design. J Atmos Sol-Terr Phys 64(16): 1723–1733. https://doi.org/10.1016/S1364-6826(02)00122-0. [CrossRef] [Google Scholar]
- Hanser, F. 2011. EPS/HEPAD calibration and data handbook. Tech. Rep. GOESN-ENG-048D. https://www.ngdc.noaa.gov/stp/satellite/goes/doc/goes_nop/GOESN-ENG-048_RevD_EPS_HEPAD_13May2011.pdf. [Google Scholar]
- Hedin, AE. 1987. MSIS-86 Thermospheric Model. J Geophys Res Space Phys 92(A5): 4649–4662. https://doi.org/10.1029/JA092iA05p04649. [CrossRef] [Google Scholar]
- Herrera, D, Maget VF, Sicard-Piet A. 2016. Characterizing magnetopause shadowing effects in the outer electron radiation belt during geomagnetic storms. J Geophys Res Space Phys 121(10): 9517–9530. https://doi.org/10.1002/2016JA022825. [CrossRef] [Google Scholar]
- Horne, R, Glauert S, Meredith N, Koskinen H, Vainio R, et al. 2013a. Forecasting the Earth’s radiation belts and modelling solar energetic particle events: Recent results from SPACECAST. J Space Weather Space Clim 3: A20. https://doi.org/10.1051/swsc/2013042. [CrossRef] [EDP Sciences] [Google Scholar]
- Horne, RB, Glauert SA, Meredith NP, Boscher D, Maget V, Heynderickx D, Pitchford D. 2013b. Space weather impacts on satellites and forecasting the Earth’s electron radiation belts with SPACECAST. Space Weather 11(4): 169–186. https://doi.org/10.1002/swe.20023. [CrossRef] [Google Scholar]
- Horne, RB, Kersten T, Glauert SA, Meredith NP, Boscher D, Sicard-Piet A, Thorne RM, Li W. 2013c. A new diffusion matrix for whistler mode chorus waves. J Geophys Res Space Phys 118(10): 6302–6318. https://doi.org/10.1002/jgra.50594. [CrossRef] [Google Scholar]
- Hudson, MK, Kress BT, Mueller H-R, Zastrow JA, Bernard Blake J. 2008. Relationship of the Van Allen radiation belts to solar wind drivers. J Atmos Sol-Terr Phys 70(5): 708–729. https://doi.org/10.1016/j.jastp.2007.11.003. [CrossRef] [Google Scholar]
- Kalman, RE. 1960. A new approach to linear filtering and prediction problems. J Basic Eng 82(1): 35–45. https://doi.org/10.1115/1.3662552. [CrossRef] [Google Scholar]
- Kilpua, E, Luhmann J, Jian L, Russell C, Li Y. 2014. Why have geomagnetic storms been so weak during the recent solar minimum and the rising phase of cycle 24? J Atmos Sol-Terr Phys 107: 12–19. https://doi.org/10.1016/j.jastp.2013.11.001. [CrossRef] [Google Scholar]
- Koons, H, Mazur J, Selesnick R, Blake J, Fennell J, Roeder J, Anderson P. 1999. The impact of the space environment on space systems. NASA STI/Recon Technical Report N, 69, 036–69, 041. https://apps.dtic.mil/sti/pdfs/ADA376872.pdf. [Google Scholar]
- Li, W, Hudson M. 2019. Earth’s Van Allen radiation belts: from discovery to the Van Allen Probes era. J Geophys Res Space Phys 124(11): 8319–8351. https://doi.org/10.1029/2018JA025940. [CrossRef] [Google Scholar]
- Li, X, Baker DN, Temerin M, Cayton TE, Reeves EGD, Christensen RA, Blake JB, Looper MD, Nakamura R, Kanekal SG. 1997. Multisatellite observations of the outer zone electron variation during the November 3–4, 1993, magnetic storm. J Geophys Res Space Phys 102(A7): 14123–14140. https://doi.org/10.1029/97JA01101. [CrossRef] [Google Scholar]
- Li, W, Ma Q, Thorne RM, Bortnik J, Zhang X-J, et al. 2016. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations. J Geophys Res Space Phys 121(6): 5520–5536. https://doi.org/10.1002/2016JA022400. [CrossRef] [Google Scholar]
- Li, X, Baker DN, Zhao H, Zhang K, Jaynes AN, Schiller Q, Kanekal SG, Blake JB, Temerin M. 2017. Radiation belt electron dynamics at low L (¡4): Van Allen Probes era versus previous two solar cycles. J Geophys Res Space Phys 122(5): 5224–5234. https://doi.org/10.1002/2017JA023924. [CrossRef] [Google Scholar]
- Lorenzato, L, Sicard A, Bourdarie S. 2012. A physical model for electron radiation belts of Saturn. J Geophys Res Space Phys 117: A8. https://doi.org/10.1029/2012JA017560. [CrossRef] [Google Scholar]
- Lugaz N., Liu H., Carter B. A., Gannon J., Zou S., Morley S. K.. 2023. New space companies meet a normal solar maximum. Space Weather 21(9): E2023SW003702. https://doi.org/10.1029/2023SW003702. [CrossRef] [Google Scholar]
- Lyons, LR, Thorne RM, Kennel CF. 1972. Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J Geophys Res (1896–1977) 77(19): 3455–3474. https://doi.org/10.1029/JA077i019p03455. [CrossRef] [Google Scholar]
- Maget, V, Bourdarie S, Boscher D, Friedel RHW. 2007. Data assimilation of LANL satellite data into the Salammbô electron code over a complete solar cycle by direct insertion. Space Weather 5(10): S10003. https://doi.org/10.1029/2007SW000322. [CrossRef] [Google Scholar]
- Maget, V, Sicard-Piet A, Bourdarie S, Lazaro D, Turner DL, Daglis IA, Sandberg I. 2015. Improved outer boundary conditions for outer radiation belt data assimilation using THEMIS-SST data and the Salammbo-EnKF code. J Geophys Res Space Phys 120(7): 5608–5622. https://doi.org/10.1002/2015JA021001. [CrossRef] [Google Scholar]
- Meredith, NP, Horne RB, Sicard-Piet A, Boscher D, Yearby KH, Li W, Thorne RM. 2012. Global model of lower band and upper band chorus from multiple satellite observations. J Geophys Res Space Phys 117(A10): A10225. https://doi.org/10.1029/2012JA017978. [CrossRef] [Google Scholar]
- Miyoshi, Y, Hori T, Shoji M, Teramoto M, Chang T, et al. 2018. The ERG science center. Earth Planets Space 70(1): 1–11. https://doi.org/10.1186/s40623-018-0867-8. [CrossRef] [Google Scholar]
- Mohammadzadeh, A, Evans H, Nieminen P, Daly E, Vuilleumier P, et al. 2003. The ESA Standard Radiation Environment Monitor program first results from PROBA-I and INTEGRAL. IEEE Trans Nuclear Sci 50(6): 2272–2277. https://doi.org/10.1109/TNS.2003.821796. [CrossRef] [Google Scholar]
- Morley, SK, Sullivan JP, Carver MR, Kippen RM, Friedel RHW, Reeves GD, Henderson MG. 2017. Energetic particle data from the global positioning system constellation. Space Weather 15(2): 283–289. https://doi.org/10.1002/2017SW001604. [CrossRef] [Google Scholar]
- Morley, SK, Brito TV, Welling DT. 2018. Measures of model performance based on the log accuracy ratio. Space Weather 16(1): 69–88. https://doi.org/10.1002/2017SW001669. [NASA ADS] [CrossRef] [Google Scholar]
- Morley S.K, Niehof JT, Welling DT, Larsen BA, Brunet A, et al. 2022. SpacePy https://doi.org/10.5281/zenodo.7083375 [Google Scholar]
- Nandy D. 2021. Progress in solar cycle predictions: Sunspot cycles 24–25 in perspective. Solar Phys 296(3): 54. https://doi.org/10.1007/s11207-021-01797-2. [CrossRef] [Google Scholar]
- Nénon, Q, Sicard A, Bourdarie S. 2017. A new physical model of the electron radiation belts of Jupiter inside Europa’s orbit. J Geophys Res Space Phys 122(5): 5148–5167. https://doi.org/10.1002/2017JA023893. [CrossRef] [Google Scholar]
- Nerger, L, Hiller W, Schroter J. 2005. PDAF – The parallel data assimilation framework: Experiences with Kalman filtering. In: Use of high performance computing in meteorology. World Scientific, pp. 63–83. https://doi.org/10.1142/9789812701831_0006. [CrossRef] [Google Scholar]
- Nieckarz, Z, Michałek G. 2020. Long-term observation of magnetic pulsations through the ELF Hylaty station located in the Bieszczady Mountains (south–eastern Poland). J Space Weather Space Clim 10: 59. https://doi.org/10.1051/swsc/2020063, [CrossRef] [EDP Sciences] [Google Scholar]
- Papadimitriou, C. 2024. GLORAB LEO Model. https://doi.org/10.5281/zenodo.14501659. [Google Scholar]
- Pierrard, V, Lopez Rosson G, Botek E. 2019. Dynamics of megaelectron volt electrons observed in the inner belt by PROBA-V/EPT. J Geophys Res Space Phys 124(3): 1651–1659. https://doi.org/10.1029/2018JA026289. [CrossRef] [Google Scholar]
- Ripoll, J-F, Claudepierre SG, Ukhorskiy AY, Colpitts C, Li X, Fennell JF, Crabtree C. 2020. Particle Dynamics in the Earth’s radiation belts: review of current research and open questions. J Geophys Res Space Phys 125(5): e2019JA026735. https://doi.org/10.1029/2019JA026735. [CrossRef] [Google Scholar]
- Rodger, CJ, Cresswell-Moorcock K, Clilverd MA. 2016. Nature’s Grand Experiment: Linkage between magnetospheric convection and the radiation belts. J Geophys Res Space Phys 121(1): 171–189. https://doi.org/10.1002/2015JA021537. [CrossRef] [Google Scholar]
- Roederer, JG. 1970. Trapped particle distributions and flux mapping. In dynamics of geomagnetically trapped radiation. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 84–111. ISBN 978-3-642-49300-3. https://doi.org/10.1007/978-3-642-49300-3_4. [CrossRef] [Google Scholar]
- Sicard, A, Bourdarie S. 2004. Physical Electron Belt Model from Jupiter’s surface to the orbit of Europa. J Geophys Res Space Phys 109(A2): A02216. https://doi.org/10.1029/2003JA010203. [CrossRef] [Google Scholar]
- Sicard, A, Boscher D, Bourdarie S, Lazaro D, Standarovski D, Ecoffet R. 2018. GREEN: the new Global Radiation Earth ENvironment model (beta version). Ann Geophys 36(4): 953–967. https://doi.org/10.5194/angeo-36-953-2018. [Google Scholar]
- Sicard-Piet, A, Bourdarie S, Boscher D, Friedel RHW, Thomsen M, Goka T, Matsumoto H, Koshiishi H. 2008. A new international geostationary electron model: IGE-2006, from 1 keV to 5.2 MeV. Space Weather 6(7): S07003. https://doi.org/10.1029/2007SW000368. [CrossRef] [Google Scholar]
- Sicard-Piet, A, Boscher D, Lazaro D, Bourdarie S, Rolland G. 2013. A new ONERA-CNES slot electron model. In: 2013 14th European Conference on Radiation and Its Effects on Components and Systems (RADECS), 23–27 September 2013, Oxford, UK, pp. 1–7. https://doi.org/10.1109/RADECS.2013.6937415. [Google Scholar]
- Sicard-Piet, A, Boscher D, Horne RB, Meredith NP, Maget V. 2014. Effect of plasma density on diffusion rates due to wave particle interactions with chorus and plasmaspheric hiss: extreme event analysis. Ann Geophys 32: 1059–1071. https://doi.org/10.5194/angeo-32-1059-2014. [Google Scholar]
- Slivinski, LC. 2018. Historical reanalysis: What, How, and Why? J Adv Model Earth Syst 10(8): 1736–1739. https://doi.org/10.1029/2018MS001434. [CrossRef] [Google Scholar]
- Spence, HE, Reeves GD, Baker D, Blake J, Bolton M, et al. 2013. Science goals and overview of the Radiation Belt Storm Probes (RBSP) Energetic particle, Composition, and Thermal plasma (ECT) suite on NASA’s Van Allen probes mission. Space Sci Rev 179: 311–336. https://doi.org/10.1007/s11214-013-0007-5. [CrossRef] [Google Scholar]
- Subbotin, DA, Shprits YY, Ni B. 2011. Long-term radiation belt simulation with the VERB 3-D code: Comparison with CRRES observations. J Geophys Res Space Phys 116(A12): A12210. https://doi.org/10.1029/2011JA017019, [CrossRef] [Google Scholar]
- Tsyganenko, N. 1989. A magnetospheric magnetic field model with a warped tail current sheet. Planet Space Sci 37(1): 5–20. https://doi.org/10.1016/0032-0633(89)90066-4. [CrossRef] [Google Scholar]
- Tu, W, Cunningham GS, Chen Y, Morley SK, Reeves GD, Blake JB, Baker DN, Spence H. 2014. Event-specific chorus wave and electron seed population models in DREAM3D using the Van Allen Probes. Geophys Res Lett 41(5): 1359–1366. https://doi.org/10.1002/2013GL058819. [CrossRef] [Google Scholar]
- Vette, JI. 1991. The AE-8 trapped electron model environment, Vol. 91, National Space Science Data Center (NSSDC), World Data Center A for Rockets. [Google Scholar]
- Yokota, S, Ayako M, Tomoaki H. 2019. Exploration of energization and Radiation in Geospace (ERG) MEP-i Level-3 3-D flux data. https://doi.org/10.34515/DATA.ERG-03003 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.