Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
|
|
---|---|---|
Article Number | 24 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/swsc/2025021 | |
Published online | 30 June 2025 |
- Alissandrakis CE. 1981. On the computation of constant alpha force-free magnetic field. A&A 100(1): 197–200. [Google Scholar]
- Arden WM, Norton AA, Sun X. 2014. A “breathing” source surface for cycles 23 and 24. J Geophys Res Space Phys 119(3): 1476–1485. https://doi.org/10.1002/2013JA019464. [CrossRef] [Google Scholar]
- Arge CN, Odstrcil D, Pizzo VJ, Mayer LR. 2003. Improved method for specifying solar wind speed near the sun. In: Solar wind ten, vol. 679 of American Institute of Physics Conference Series, Velli M, Bruno R, Malara F, Bucci B (Eds.), AIP: Pisa, pp. 190–193. https://doi.org/10.1063/1.1618574. [Google Scholar]
- Arge CN, Pizzo CN. 2000. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates, J Geophys Res , 105(A5): 10465–10480. https://doi.org/10.1029/1999JA000262. [CrossRef] [Google Scholar]
- Badman ST, Bale SD, Martínez Oliveros JC, Panasenco O, Velli M, et al. 2020. Magnetic connectivity of the ecliptic plane within 0.5 au: potential field source surface modeling of the first parker solar probe encounter. Astrophys J Suppl Ser 246(2): 23. https://doi.org/10.3847/1538-4365/ab4da7. [CrossRef] [Google Scholar]
- Barnard L, Owens M. 2022. HUXt – an open source, computationally efficient reduced-physics solar wind model, written in Python. Front Phys 10, 1005621. https://doi.org/10.3389/fphy.2022.1005621. [CrossRef] [Google Scholar]
- Berghmans D, Hochedez J, Defise J, Lecat J, Nicula B, et al. 2006. SWAP onboard PROBA 2, a new EUV imager for solar monitoring. Adv Space Res 38(8): 1807–1811. Magnetospheric dynamics and the international living with a star program. https://doi.org/10.1016/j.asr.2005.03.070. [CrossRef] [Google Scholar]
- Fox NJ, Velli MC, Bale SD, Decker R, Driesman A, et al. 2016. The solar probe plus mission: humanity’s first visit to our star. Space Sci Rev 204(1–4): 7–48. https://doi.org/10.1007/s11214-015-0211-6. [CrossRef] [Google Scholar]
- Halain JP, Berghmans D, Seaton DB, Nicula B, De Groof A, Mierla M, Mazzoli M, Defise JM, Rochus P. 2013. The SWAP EUV imaging telescope. Part II: in-flight performance and calibration. Solar Phys 286(1): 67–91. https://doi.org/10.1007/s11207-012-0183-6. [CrossRef] [Google Scholar]
- He H, Wang H, Yan Y. 2011. Nonlinear force-free field extrapolation of the coronal magnetic field using the data obtained by the Hinode satellite. J Geophys Res Space Phys 116(A1):, A01101. https://doi.org/10.1029/2010JA015610. [Google Scholar]
- Hill F. 2018. The global oscillation network group facility – an example of research to operations in space weather, Space Weather 16(10): 1488–1497. https://doi.org/10.1029/2018SW002001. [NASA ADS] [CrossRef] [Google Scholar]
- Huang Z, Tóth G, Huang J, Sachdeva N, van der Holst B, Manchester WB. 2024. Adjusting the potential field source surface height based on magnetohydrodynamic simulations. Astrophys J Lett 965(1): L1. https://doi.org/10.3847/2041-8213/ad3547. [CrossRef] [Google Scholar]
- Kruse M, Heidrich-Meisner V, Wimmer-Schweingruber RF, Hauptmann M. 2020. An elliptic expansion of the potential field source surface model. A&A 638: A109. https://doi.org/10.1051/0004-6361/202037734. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Kumar S, Paul A, Vaidya B. 2020. A comparison study of extrapolation models and empirical relations in forecasting solar wind. Front Astron Space Sci , 7: 92. https://doi.org/10.3389/fspas.2020.572084. [CrossRef] [Google Scholar]
- Kumar S, Srivastava N. 2022. A parametric study of performance of two solar wind velocity forecasting models during 2006–2011. Space Weather 20(9): e2022SW003069. https://doi.org/10.1029/2022SW003069. [CrossRef] [Google Scholar]
- Lee CO, Luhmann JG, Hoeksema JT, Sun X, Arge CN, de Pater I. 2011. Coronal field opens at lower height during the solar cycles 22 and 23 minimum periods: imf comparison suggests the source surface should be lowered. Solar Phys 269(2): 367–388. https://doi.org/10.1007/s11207-010-9699-9. [CrossRef] [Google Scholar]
- Li H, Feng X, Wei F. 2021. Comparison of synoptic maps and PFSS solutions for the declining phase of solar cycle 24. J Geophys Res Space Phys 126(3): e28870. https://doi.org/10.1029/2020JA028870. [Google Scholar]
- Lowder C, Qiu J, Leamon R. 2017. Coronal holes and open magnetic flux over cycles 23 and 24. Solar Phys 292(1): 18. https://doi.org/10.1007/s11207-016-1041-8. [CrossRef] [Google Scholar]
- Mayank P, Vaidya P, Chakrabarty D. 2022. SWASTi-SW: space weather adaptive simulation framework for solar wind and its relevance to the Aditya-L1 mission. Astrophys J Suppl Ser , 262(1): 23. https://doi.org/10.3847/1538-4365/ac8551. [CrossRef] [Google Scholar]
- Meyer KA, Mackay DH, TalpeanuD-C, Upton LA, West MJ. 2020. Investigation of the middle corona with SWAP and a data-driven non-potential coronal magnetic field model. Solar Phys 295(7): 101. https://doi.org/10.1007/s11207-020-01668-2. [CrossRef] [Google Scholar]
- Narechania NM, Nikolić L, Freret L, De Sterck H, Groth CPT. 2021. An integrated data-driven solar wind – CME numerical framework for space weather forecasting. J Space Weather and Space Clim 11: 8. https://doi.org/10.1051/swsc/2020068. [CrossRef] [EDP Sciences] [Google Scholar]
- Nikolić L. 2019. On solutions of the PFSS model with GONG synoptic maps for 2006–2018. Space Weather 17(8): 1293–1311. https://doi.org/10.1029/2019SW002205. [CrossRef] [Google Scholar]
- Odstrcil D, Riley P, Zhao XP. 2004. Numerical simulation of the 12 May 1997 interplanetary CME event. J Geophys Res Space Phys 109(A2): A02116. https://doi.org/10.1029/2003JA010135. [CrossRef] [Google Scholar]
- Perri B, Leitner P, Brchnelova M, Baratashvili T, Kuzma B, Zhang F, Lani A, Poedts S. 2022. COCONUT, a novel fast-converging MHD model for solar corona simulations: I. Benchmarking and optimization of polytropic solutions. Astrophys J 936(1): 19. https://doi.org/10.3847/1538-4357/ac7237. [CrossRef] [Google Scholar]
- Pomoell J, Poedts S. 2018. EUHFORIA: European heliospheric forecasting information asset. J Space Weather Space Clim 8: A35. https://doi.org/10.1051/swsc/2018020. [Google Scholar]
- Reiss MA, MacNeice PJ, Mays LM, Arge CN, Möstl C, Nikolić L, Amerstorfer T. 2019. Forecasting the ambient solar wind with numerical models. I. On the implementation of an operational framework. Astrophys J Suppl Ser 240(2): 35. https://doi.org/10.3847/1538-4365/aaf8b3. [CrossRef] [Google Scholar]
- Riley P, Linker JA, Arge CN. 2015. On the role played by magnetic expansion factor in the prediction of solar wind speed. Space Weather 13(3): 154–169. https://doi.org/10.1002/2014SW001144. [NASA ADS] [CrossRef] [Google Scholar]
- Riley P, Linker JA, Mikić Z. 2001. An empirically-driven global MHD model of the solar corona and inner heliosphere. J Geophys Res Space Phys 106(8): 15889–15901. https://doi.org/10.1029/2000JA000121. [CrossRef] [Google Scholar]
- Riley P, Lionello R. 2011. Mapping solar wind streams from the sun to 1 au: a comparison of techniques. Solar Phys 270(2): 575–592. https://doi.org/10.1007/s11207-011-9766-x. [CrossRef] [Google Scholar]
- Samara E, Laperre B, Kieokaew R, Temmer M, Verbeke C, Rodriguez L, Magdalenic J, Poedts S. 2022. Dynamic time warping as a means of assessing solar wind time series. Astrophys J 927(2): 187. https://doi.org/10.3847/1538-4357/ac4af6. [CrossRef] [Google Scholar]
- Santandrea S, Gantois K, Strauch K, Teston F, Proba2 Project Team, et al. 2013. PROBA2: Mission and spacecraft overview Solar Phys 286(1): 5–19. https://doi.org/10.1007/s11207-013-0289-5. [CrossRef] [Google Scholar]
- Schatten KH. 1971. Current sheet magnetic model for the solar corona. Cosmic Electrodyn 2: 232–245. [Google Scholar]
- Schatten KH, Wilcox JM, Ness NF. 1969. A model of interplanetary and coronal magnetic fields. Solar Phys 6(3): 442–455. https://doi.org/10.1007/BF00146478. [CrossRef] [Google Scholar]
- Scherrer PH, Bogart RS, Bush RI, Hoeksema JT, Kosovichev AG, et al. 1995. The solar oscillations investigation – Michelson Doppler Imager. Solar Phys 162(1–2): 129–188. https://doi.org/10.1007/BF00733429. [CrossRef] [Google Scholar]
- Scherrer PH, Schou J, Bush RI, Kosovichev AG, Bogart RS, et al. 2012. The Helioseismic and Magnetic Imager (HMI) investigation for the solar dynamics observatory (SDO). Solar Phys 275(1–2): 207–227. https://doi.org/10.1007/s11207-011-9834-2. [CrossRef] [Google Scholar]
- Seaton DB, Berghmans D, Nicula B, Halain JP, De Groof A, et al. 2013. The SWAP EUV imaging telescope part I: instrument overview and pre-flight testing. Solar Phys 286(1): 43–65. https://doi.org/10.1007/s11207-012-0114-6. [CrossRef] [Google Scholar]
- Shiota D, Kataoka R, Miyoshi Y, Hara Y, Tao C, Masunaga K, Futaana Y, Terada N. 2014.Inner heliosphere MHD modeling system applicable to space weather forecasting for the other planets. Space Weather 12(4): 187–204. https://doi.org/10.1002/2013SW000989. [NASA ADS] [CrossRef] [Google Scholar]
- Stansby D, Yeates A, Badman ST. 2020. pfsspy: a Python package for potential field source surface modelling. J Open Source Soft 5(54): 2732. https://doi.org/10.21105/joss.02732. [CrossRef] [Google Scholar]
- The SunPy Community, Barnes WT, Bobra MG, Christe SD, Freij N, et al. 2020. The SunPy Project: open source development and status of the version 1.0 core package. Astrophys J 890: 68. https://doi.org/10.3847/1538-4357/ab4f7a. [CrossRef] [Google Scholar]
- van der Holst B, Sokolov IV, Meng X, Jin M, Manchester IV WB, Tóth G, Gombosi TI. 2014. Alfvén Wave Solar Model (AWSoM): coronal heating. Astrophys J 782(2): 81. https://doi.org/10.1088/0004-637X/782/2/81. [CrossRef] [Google Scholar]
- Wang YM, Sheeley Jr NR. 1990. Solar wind speed and coronal flux-tube expansion. Astrophys J 355: 726. https://doi.org/10.1086/168805. [CrossRef] [Google Scholar]
- West MJ, Seaton DB, D’Huys E, Mierla M, Laurenza M, Meyer KA, Berghmans D, Rachmeler LR, Rodriguez L, Stegen K. 2022. A review of the extended EUV corona observed by the sun watcher with active pixels and image processing (SWAP) instrument. Solar Phys 297(10): 136. https://doi.org/10.1007/s11207-022-02063-9. [CrossRef] [Google Scholar]
- Wiegelmann T. 2004. Optimization code with weighting function for the reconstruction of coronal magnetic fields. Solar Phys 219(1): 87–108. https://doi.org/10.1023/B:SOLA.0000021799.39465.36. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.