Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
Topical Issue - Observing, modelling and forecasting TIDs and mitigating their impact on technology
|
|
---|---|---|
Article Number | 25 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/swsc/2025020 | |
Published online | 03 July 2025 |
- Afraimovich, EL, Kosogorov EA, Leonovich LA, Palamartchouk KS, Perevalova NP, Pirog OM. 2000. Determining parameters of large-scale traveling ionospheric disturbances of auroral origin using GPS-arrays. Atmos. Solar Terr. Phys. 62: 553–565. https://doi.org/10.1016/S1364-6826(00)00011-0. [CrossRef] [Google Scholar]
- Afraimovich, E, Astafyeva E, Demyanov V, Edemskiy I, Gavrilyuk N, et al. 2013. A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. J Space Weather Space Clim 3: A27. https://doi.org/10.1051/swsc/2013049. [CrossRef] [EDP Sciences] [Google Scholar]
- Akiba, T, Sano S, Yanase T, Ohta T, Koyama M. 2019. Optuna: A next-generation hyperparameter optimization framework. In: KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2623–2631. https://doi.org/10.1145/3292500.3330701. [CrossRef] [Google Scholar]
- Altadill, D, Segarra A, Blanch E, Juan JM, Paznukhov V, Buresova D, Galkin I, Reinisch BW, Belehaki A. 2020. A method for real-time identification and tracking of traveling ionospheric disturbances using ionosonde data: First results. J Space Weather Space Clim 10: 2. https://doi.org/10.1051/swsc/2019042. [CrossRef] [EDP Sciences] [Google Scholar]
- Asamoah EN, Cafaro M, Epicoco I, Franceschi GD, Cesaroni C. 2024. A stacked machine learning model for the vertical total electron content forecasting. Adv Space Res 74(1):223–242. https://doi.org/10.1016/j.asr.2024.04.055. [CrossRef] [Google Scholar]
- Azeem I, Yue J, Hoffmann L, Miller SD, Straka III WCCrowley G. 2015.Multisensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere. Geophys Res Lett 42(19):7874–7880. https://doi.org/10.1002/2015GL065903. [CrossRef] [Google Scholar]
- Banks, PM. 1977. Observations of joule and particle heating in the auroral zone. J Atmos Terr Phys 39: 179–193. https://doi.org/10.1016/0021-9169(77)90112-X. [CrossRef] [Google Scholar]
- Bartels, J, Heck NH, Johnston HF. 1939. The three-hour-range index measuring geomagnetic activity. Terr Magn Atmos Electric 44: 4. https://doi.org/10.1029/TE044i004p00411. [Google Scholar]
- Belehaki, A, Tsagouri I, Altadill D, Blanch E, Borries C, et al. 2020. An overview of methodologies for real-time detection, characterisation and tracking of traveling ionospheric disturbances developed in the TechTIDE project. J Space Weather Space Clim 10: 42. https://doi.org/10.1051/swsc/2020043. [CrossRef] [EDP Sciences] [Google Scholar]
- Belehaki, A, Häggström I, Kiss T, Galkin I, Tjulin A, et al. 2024. Integrating plasmasphere, ionosphere and thermosphere observations and models into a standardised open access research environment: The PITHIA-NRF international project. Adv Space Res 75: 3082–3114. https://doi.org/10.1016/j.asr.2024.11.065. [Google Scholar]
- Bergin A, Chapman SC, Gjerloev JW. 2020..AE, DST, and their SuperMAG counterparts: the effect of improved spatial resolution in geomagnetic indices. J Geophys Res Space Phys 125(5): e2020JA027828. https://doi.org/10.1029/2020JA027828. [CrossRef] [Google Scholar]
- Borries, C, Jakowski N, Wilken V. 2009. Storm induced large scale TIDs observed in GPS derived TEC. 592. Ann Geophys 27: 1605–1612. https://doi.org/10.5194/angeo-27-1605-2009. [CrossRef] [Google Scholar]
- Bowman, GG. 1965. Travelling disturbances associated with ionospheric storms. J Atmos Terr Phys 27: 1247–1261. https://doi.org/10.1016/0021-9169(65)90085-1. [CrossRef] [Google Scholar]
- Buresova, D, Belehaki A, Tsagouri I, Watermann J, Galkin I, et al. 2019. Report on methodology for the specification of TID drivers. https://doi.org/10.5281/zenodo.2555119. [Google Scholar]
- Camporeale E. 2019. The challenge of machine learning in space weather: nowcasting and forecasting. Space Weather 17(8):1166–1207. https://doi.org/10.1029/2018SW002061. [CrossRef] [Google Scholar]
- Cesaroni, C, Spogli L, Aragon-Angel A, Fiocca M, Dear V, De Franceschi G, Romano V. 2020. Neural network-based model for global Total Electron Content forecasting. J Space Weather Space Clim 10: 11. https://doi.org/10.1051/swsc/2020013. [CrossRef] [EDP Sciences] [Google Scholar]
- Chan, KL, Villard OG, Jr. 1962. Observation of large-scale traveling ionospheric disturbances by spaced-path high-frequency instantaneous-frequency measurements. J Geophys Res 67: 973–988. https://doi.org/10.1029/JZ067i003p009733. [CrossRef] [Google Scholar]
- Davis, MJ. 1971. On polar substorms as the source of large-scale traveling ionospheric disturbances. J Geophys Res 76: 4525–4533. https://doi.org/10.1029/JA076i019p04525. [CrossRef] [Google Scholar]
- Dorogush, AV, Ershov V, Gulin A. 2018. CatBoost: gradient boosting with categorical features support. ML Systems, NeurIPS 2017. https://doi.org/10.48550/arXiv.1810.11363. [Google Scholar]
- Eather, RH, Mende SB, Judge RJR. 1976. Plasma Injection at synchronous orbit and spatial and temporal auroral morphology. J Geophys Res 81 (16): 2805–2824. https://doi.org/10.1029/JA081i016p02805. [CrossRef] [Google Scholar]
- Fernández, A, García S, Galar M, Prati RC, Krawczyk B, Herrera F. 2018. Learning from imbalanced data sets. Springer International Publishing. Switzerland. ISBN: 978–3319980737. [CrossRef] [Google Scholar]
- Filho, TS, Song H, Perello-Nieto M, Santos-Rodriguez R, Kull M, Flach P. 2023. Classifier Calibration: A survey on how to assess and improve predicted class probabilities. Mach Learn 112 (9): 3211–3260. https://doi.org/10.1007/s10994-023-06336-7. [CrossRef] [Google Scholar]
- Filjar, R. 2021. A contribution to short-term rapidly developing geomagnetic storm classification for GNSS ionosphere effects mitigation model development. In: 2021 Seventh International Conference on Aerospace Science and Engineering (ICASE), Islamabad, Pakistan, pp. 1–6. https://doi.org/10.1109/ICASE54940.2021.9904168. [Google Scholar]
- Georges, TM. 1968. HF Doppler studies of traveling ionospheric disturbances. J Atmos Terr Phys 30: 735–746. https://doi.org/10.1016/S0021-9169(68)80029-7. [CrossRef] [Google Scholar]
- Guerra, M, Cesaroni C, Ravanelli M, Spogli L. 2024. Travelling Ionospheric Disturbances detection: a statistical study of detrending techniques, induced period error and near real-time observables. J Space Weather Space Clim 14: 17. https://doi.org/10.1051/swsc/2024017. [CrossRef] [EDP Sciences] [Google Scholar]
- Habarulema, JB, Katamzi ZT, Yizengaw E. 2015. First observations of poleward large-scale traveling ionospheric disturbances over the African sector during geomagnetic storm conditions. J Geophys Res Space Phys 120: 6914–6929. https://doi.org/10.1002/2015JA021066. [CrossRef] [Google Scholar]
- Habarulema, JB, Katamzi ZT, Yizengaw E, Yamazaki Y, Seemala G. 2016. Simultaneous storm time equatorward and poleward large‐scale TIDs on a global scale. Geophys Res Lett 43 (13): 6678–6686. https://doi.org/10.1002/2016GL069740. [CrossRef] [Google Scholar]
- Haralambous, H, M Guerra, J Chum, TG Verhulst, V Barta, et al. 2023. Multi‐instrument observations of various ionospheric disturbances caused by the 6 February 2023 Turkey earthquake. J Geophys Res Space Phys 128 (12): e2023JA031691. https://doi.org/10.1029/2023JA031691. [CrossRef] [Google Scholar]
- Hines, CO. 1960. Internal atmospheric gravity waves at ionospheric heights. Can J Phys 38: 1441–1481. https://doi.org/10.1139/p60-150. [CrossRef] [Google Scholar]
- Huang X, Reinisch BW, Sales GS, Paznukhov VV, Galkin IA. 2016. Comparing TID simulations using 3-D ray tracing and mirror reflection. Radio Sci 51(4): 337–343. https://doi.org/10.1002/2015RS005872. [CrossRef] [Google Scholar]
- Hunsucker RD. 1982. Atmospheric gravity waves generated in the high-latitude ionosphere: A review. Rev Geophys 20: 293–315. https://doi.org/10.1029/RG020i002p00293. [CrossRef] [Google Scholar]
- Iban MC, Şentürk E. 2022. Machine learning regression models for prediction of multiple ionospheric parameters. Adv Space Res 69(3): 1319–1334. https://doi.org/10.1016/j.asr.2021.11.026. [CrossRef] [Google Scholar]
- Johansson, U, Gabrielsson P. 2019. Are traditional neural networks well-calibrated? In: 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, pp. 1–8, https://doi.org/10.1109/IJCNN.2019.8851962. [Google Scholar]
- Jonah, OF, Zhang S, Coster AJ, Goncharenko LP, Erickson PJ, Rideout W, de Paula ER, de Jesus R. 2020. Understanding inter-hemispheric traveling ionospheric disturbances and their mechanisms. Rem Sens 12 (2): 228. https://doi.org/10.3390/rs12020228. [CrossRef] [Google Scholar]
- Kamide Y, Akasofu S-I. 1983. Notes on the auroral electrojet indices. Rev Geophys 21(7): 1647–1656. https://doi.org/10.1029/RG021i007p01647. [CrossRef] [Google Scholar]
- Kauristie, K, Morschhauser A, Olsen N, Finlay CC, McPherron RL, Gjerloev JW, Opgenoorth HJ. 2017. On the usage of geomagnetic indices for data selection in internal field modelling. Space Sci Rev 206: 61–90. https://doi.org/10.1007/s11214-016-0301-0. [CrossRef] [Google Scholar]
- Kauristie, K, Andries J, Beck P, Berdermann J, Berghmans D, et al. 2021. Space weather services for civil aviation – challenges and solutions, Rem Sens, 13 (18): 3685. https://doi.org/10.3390/rs13183685. [CrossRef] [Google Scholar]
- Khan, SH, Hayat M, Bennamoun M, Sohel F, Togneri R. 2017. Cost-sensitive learning of deep feature representations from imbalanced data. IEEE Trans Neural Netw Learn Syst 29: 3573–3587. https://doi.org/10.1109/TNNLS.2017.2732482. [Google Scholar]
- Krzysztofowicz, R. 2024. Probabilistic forecasts and optimal decisions. John Wiley & Sons Ltd, UK. [CrossRef] [Google Scholar]
- Li H, Wang C, Kan JR. 2011. Contribution of the partial ring current to the SYMH index during magnetic storms. J Geophys Res Space Phys 116(A11). https://doi.org/10.1029/2011JA016886. [Google Scholar]
- Liu, L, Zou S, Yao Y, Wang Z. 2020. Forecasting global ionospheric TEC using deep learning approach. Space Weather 18: e2020SW002501. [CrossRef] [Google Scholar]
- Liu, P, Yokoyama T, Fu W, Yamamoto M. 2022. Statistical analysis of medium-scale traveling ionospheric disturbances over japan based on deep learning instance segmentation. Space Weather 20: e2022SW003151. https://doi.org/10.1029/2022SW003151. [CrossRef] [Google Scholar]
- Lundberg, S, Lee S-I. 2017. A unified approach to interpreting model predictions. In: NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems. https://dl.acm.org/doi/10.5555/3295222.3295230. [Google Scholar]
- Maeda, S, Handa S. 1980. Transmission of large-scale TIDs in the ionospheric F2 region. J Atmos Terr Phys 42: 853–859. https://doi.org/10.1016/0021-9169(80)90089-6. [CrossRef] [Google Scholar]
- Makela, JJ, Otsuka Y. 2012. Overview of nighttime ionospheric instabilities at low- and mid-latitudes: coupling aspects resulting in structuring at the mesoscale. Space Sci Rev 168, 419–440. https://doi.org/10.1007/s11214-011-9816-6. [CrossRef] [Google Scholar]
- McGranaghan RM, Mannucci AJ, Wilson B, Mattmann CA, Chadwick R. 2018. New capabilities for prediction of high-latitude ionospheric scintillation: a novel approach with machine learning. Space Weather 16(11): 1817–1846. https://doi.org/10.1029/2018SW002018. [CrossRef] [Google Scholar]
- Moreno-Torres, JG, Raeder T, Alaiz-Rodriguez R, Chawla NV, Herrera F. 2012. A unifying view on dataset shift in classification. Pattern Recogn (Elsevier) 45 (1): 521–530. https://doi.org/10.1016/j.patcog.2011.06.019. [CrossRef] [Google Scholar]
- Newell PT, Gjerloev JW. 2012. SuperMAG-based partial ring current indices. J Geophys Res Space Phys 117(A5). https://doi.org/10.1029/2012JA017586. [Google Scholar]
- Ngwira, CM, Habarulema JB, Astafyeva E, Yizengaw E, Jonah OF, et al. 2019. Dynamic response of ionospheric plasma density to the geomagnetic storm of 22‐23 June 2015. J Geophys Res Space Phys 124 (8): 7123–7139. https://doi.org/10.1029/2018JA026172. [CrossRef] [Google Scholar]
- Nykiel, G, Ferreira A, Günzkofer F, Iochem P, Tasnim S, Sato H. 2024. Large‐scale traveling ionospheric disturbances over the European sector during the geomagnetic storm on March 23–24, 2023: Energy deposition in the source regions and the propagation characteristics. J Geophys Res Space Phys 129: e2023JA032145. https://doi.org/10.1029/2023JA032145. [CrossRef] [Google Scholar]
- Oyama, S, Watkins B. 2012. Generation of atmospheric gravity waves in the polar thermosphere in response to auroral activity. Space Sci Rev 168 (1–4): 463–473. https://doi.org/10.1007/s11214-011-9847-z. [CrossRef] [Google Scholar]
- Paznukhov VV, Galushko VG, Reinisch BW. 2012. Digisonde observations of TIDs with frequency and angular sounding technique. Adv Space Res 49(4): 700–710. https://doi.org/10.1016/j.asr.2011.11.012. [CrossRef] [Google Scholar]
- Poniatowski, M, Nykiel G. 2020. Degradation of kinematic ppp of GNSS stations in central europe caused by medium-scale traveling ionospheric disturbances during the St. Patrick’s day 2015 geomagnetic storm. Rem Sens 12: 1–15, https://doi.org/10.3390/rs12213582. [Google Scholar]
- Reinisch B, Galkin I, Belehaki A, Paznukhov V, Huang X, Altadill D, et al. 2018. Pilot ionosonde network for identification of traveling ionospheric disturbances. Radio Sci 53(3): 365–378. https://doi.org/10.1002/2017RS006263. [CrossRef] [Google Scholar]
- Saito, A, Fukao S, Miyazaki S. 1998. High resolution mapping of TEC perturbations with the GSI GPS network over Japan. Geophys Res Lett 25: 3079–3082. https://doi.org/10.1029/98GL52361. [CrossRef] [Google Scholar]
- Savastano G, Komjathy A, Verkhoglyadova O, Mazzoni A, Crespi M, Wei Y, Mannucci AJ. 2017. Real-time detection of tsunami ionospheric disturbances with a stand-alone GNSS receiver: a preliminary feasibility demonstration. Sci Rep 7. https://doi.org/10.1038/srep46607. [CrossRef] [Google Scholar]
- Segarra, A, Altadill D, de Paula V, Navas-Portella V. 2024. Catalogue LSTID. CORA Repositori de Dades de Recerca, V1, https://doi.org/10.34810/data1383. [Google Scholar]
- Tanskanen EI. 2009. A comprehensive high-throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993–2003 examined. J Geophys Res Space Phys 114(A5). https://doi.org/10.1029/2008JA013682. [CrossRef] [Google Scholar]
- Tapping, KF. 2013. The 10.7 cm solar radio flux (F10.7). Space Weather 11: 7. https://doi.org/10.1002/swe.20064. [Google Scholar]
- Timoté, CC, Juan JM, Sanz J, González-Casado G, Rovira-Garciá A, Escudero M. 2020. Impact of medium-scale traveling ionospheric disturbances on network real-time kinematic services: CATNET study case. J Space Weather Space Clim 10: 29. https://doi.org/10.1051/swsc/2020030. [CrossRef] [EDP Sciences] [Google Scholar]
- Tsugawa, T, Saito A, Otsuka Y, Yamamoto M. 2003. Damping of large-scale traveling ionospheric disturbances detected with GPS networks during the geomagnetic storm. J Geophys Res 108: 1127. https://doi.org/10.1029/2002JA009433. [CrossRef] [Google Scholar]
- Themens DR, Watson C, Žagar N, Vasylkevych S, Elvidge S, McCaffrey A, et al. 2022. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption. Geophys Res Lett 49(7): e2022GL098158. https://doi.org/10.1029/2022GL098158. [CrossRef] [Google Scholar]
- Verhulst, TGW, Altadill D, Barta V, Belehaki A, Burešová D, et al. 2022. Multi-instrument detection in Europe of ionospheric disturbances caused by the 15 January 2022 eruption of the Hunga volcano. J Space Weather Space Clim 12: 35. https://doi.org/10.1051/swsc/2022032. [CrossRef] [EDP Sciences] [Google Scholar]
- Vovk, V, Gammerman A, Shafer G. 2022. Probabilistic classification: Venn predictors. Algorithmic learning in a random world. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-06649-8. [CrossRef] [Google Scholar]
- Vovk, V, Petej I. 2014. Uncertainty in artificial intelligence. In: Proceedings of the 30th Conference. , AUAI Press. ISBN 978-0974903910, https://doi.org/10.48550/arXiv.1211.0025. [Google Scholar]
- Watanabe, S. 2023. Tree-structured Parzen estimator: understanding its algorithm components and their roles for better empirical performance. https://doi.org/10.48550/arXiv.2304.11127. [Google Scholar]
- Yamazaki Y, Matzka J, Stolle C, Kervalishvili G, Rauberg J, Bronkalla O, et al. 2022. Geomagnetic Activity Index Hpo. Geophys Res Lett 49(10): e2022GL098860. https://doi.org/10.1029/2022GL098860. [CrossRef] [Google Scholar]
- Zakharenkova, I, Astafyeva E, Cherniak I. 2016. GPS and GLONASS observations of large-scale traveling ionospheric disturbances during the 2015 St. Patrick’s Day storm, J Geophys Res Space Phys 121: 12138–12156. https://doi.org/10.1002/2016JA023332. [CrossRef] [Google Scholar]
- Zhou, C, Zhao Z, Yang G, Chen G, Hu Y, Zhang Y. 2012. Evidence of low‐latitude daytime large‐scale traveling ionospheric disturbances observed by high‐frequency multistatic backscatter sounding system during a geomagnetically quiet period. J Geophys Res Space Phys 117: A6. https://doi.org/10.1029/2012JA017605. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.