Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
|
|
---|---|---|
Article Number | 27 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/swsc/2025023 | |
Published online | 08 July 2025 |
- Adachi I, Ishii Y, Kawai H, Kuratani A, Tabata M. 2008. Study of a silica aerogel for a Cherenkov radiator. Nucl Instrum Methods Phys Res A 595(1): 180–182. https://doi.org/10.1016/j.nima.2008.07.056. [Google Scholar]
- Agostinelli S, Allison J, Amako KA, Apostolakis J, Araujo Het al. 2003. GEANT4 – a simulation toolkit. Nucl Instrum Methods Phys Res A 506(3): 250–303. https://doi.org/10.1016/S0168-9002(03)01368-8. [Google Scholar]
- Aharonian F, Akhperjanian A, Bazer-Bachi A, Beilicke M, Benbow W, et al. 2007. First ground-based measurement of atmospheric Cherenkov light from cosmic rays. Phys Rev D 75(4): 042004. https://doi.org/10.1103/PhysRevD.75.042004. [Google Scholar]
- Allison J, Amako K, Apostolakis J, Araujo H, Dubois PA, et al. 2006. Geant4 developments and applications. IEEE Trans Nucl Sci 53(1): 270–278. https://doi.org/10.1109/TNS.2006.869826. [Google Scholar]
- Allison J, Amako K, Apostolakis J, Arce P, Asai M, et al. 2016. Recent developments in Geant4. Nucl Instrum Methods Phys Res A 835: 186–225. https://doi.org/10.1016/j.nima.2016.06.125. [Google Scholar]
- Amaré J, Borjabad S, Cebrián S, Cuesta C, Fortuño D, et al. 2014. Study of scintillation in natural and synthetic quartz and methacrylate. Opt Mater 36(8): 1408–1417. https://doi.org/10.1016/j.optmat.2014.03.042. [Google Scholar]
- Bencardino R, Altaura F, Bidoli V, Bongiorno L, Casolino M, et al. 2005. Response of the LAZIO-SiRad detector to low energy electrons. In: Proceedings of the 29th International Cosmic Ray Conference, August 3–10, 2005, Pune, India, vol. 2, Sripathi Acharya B, Gupta S, Jagadeesan P, Jain A, Karthikeyan S, Morris S, Tonwar S (Eds.), Tata Institute of Fundamental Research, Mumbai, pp. 449–452. [Google Scholar]
- Bolotovskii BM. 2009. Vavilov – Cherenkov radiation: its discovery and application. Phys Usp 52(11): 1099. https://doi.org/10.3367/UFNe.0179.200911c.1161. [Google Scholar]
- Cohen-Tanugi J, Convery M, Ratcliff B, Sarazin X, Schwiening J, Va’vra J. 2003. Optical properties of the DIRC fused silica Cherenkov radiator. Nucl Instrum Methods Phys Res A 515(3): 680–700. https://doi.org/10.1016/j.nima.2003.07.026. [Google Scholar]
- Connell J, Lopate C, Tabeling J. 2019. A novel synthetic diamond Cherenkov radiator for measuring space radiation. Nucl Instrum Methods Phys Res A 942: 162338. https://doi.org/10.1016/j.nima.2019.162338. [Google Scholar]
- Durney A, Elliot H, Hynds R, Quenby J. 1962. Satellite observations of the energetic particle flux produced by the high-altitude nuclear explosion of July 9, 1962. Nature 195(4848): 1245–1248. https://doi.org/10.1038/1951245a0. [Google Scholar]
- Durney A, Elliot H, Hynds R, Quenby J, Massey SH. 1964. The energy spectrum of the heavy primary cosmic rays. Proc R Soc Lond A Math Phys Sci 281(1387): 553–564. [Google Scholar]
- Dyer C, Engel A, Quenby J, Webb S. 1974. Observation and explanation of a 0.3% sunward radial streaming of 1 to 5 GV cosmic radiation. Solar Phys 39: 243–259. https://doi.org/10.1007/BF00154985. [Google Scholar]
- El-Shemy S, Eissa M, Sayed H, Alrakshy M, Matar Z, Aly AH. 2022. Improving the efficiency counting of Cherenkov detector by using high transmittance photonic crystal materials. Opt. Quantum Electron 54(5): 324. https://doi.org/10.1007/s11082-022-03703-x. [Google Scholar]
- Frabetti P, Giordano V, Molinari G, Bogart C, Cheung H, et al. 1992. Description and performance of the Fermilab E687 spectrometer. Nucl Instrum Methods Phys Res A 320(3): 519–547. [Google Scholar]
- Frank I, Tamm I. 1991. Coherent visible radiation of fast electrons passing through matter. In: Selected papers, Bolotovskii BM, Frenkel VY, Peierls R (Eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 29–35. ISBN 978-3-642-74626-0. https://doi.org/10.1007/978-3-642-74626-02. [Google Scholar]
- Fry EK. 2012. The risks and impacts of space weather: Policy recommendations and initiatives. Space Policy, 28(3): 180–184. https://doi.org/10.1016/j.spacepol.2012.06.005. [Google Scholar]
- Gaston KJ, Anderson K, Shutler JD, Brewin RJ, Yan X. 2023. Environmental impacts of increasing numbers of artificial space objects. Front Ecol Environ 21(6): 289–296. https://doi.org/10.1002/fee.2624. [Google Scholar]
- Gopalswamy N. 2022. The Sun and space weather. Atmosphere 13(11): 1781. https://doi.org/10.3390/atmos13111781. [CrossRef] [Google Scholar]
- Heber B, Kopp A, Fichtner H, Ferreira S. 2005. On the determination of energy spectra of MeV electrons by the Ulysses COSPIN/KET. Adv Space Res 35(4): 605–610. https://doi.org/10.1016/j.asr.2005.01.054. [CrossRef] [Google Scholar]
- Hirata KS, Kajita T, Kifune T, Kihara K, Nakahata M, et al. 1989. Observation of 8 B solar neutrino sin the Kamiokande – II detector. Phys Rev Lett 63(1): 16. https://doi.org/10.1103/PhysRevLett.63.16 [Google Scholar]
- Korpar S, Dolenec R, Hara K, Iijima T, Križan P, Mazuka Y, Pestotnik R, Stanovnik A, Yamaoka M. 2008. Silicon photomultiplier as a detector of Cherenkov photons. Nucl Instrum Methods Phys Res A 595(1) 161–164. https://doi.org/10.1016/j.nima.2008.07.013. [Google Scholar]
- Kratochwil N, Gundacker S, Auffray E. 2021. A roadmap for sole Cherenkov radiators with SiPMs in TOF-PET. Phys Med Biol 66(19): 195001. https://doi.org/10.1088/1361-6560/ac212a. [Google Scholar]
- Mazur J, Friesen L, Lin A, Mabry D, Katz N, et al. 2014a. The relativistic proton spectrometer (RPS) for the radiation belt storm probes mission. The Van Allen Probes Mission 2014: 221–261. https//doi.org/10.1007/978-1-4899-7433-47. [Google Scholar]
- Mazur J, O’Brien T, Looper M, Blake J. 2014b. Large anisotropies of 60 MeV protons throughout the inner belt observed with the Van Allen Probes mission. Geophys Res Lett 41(11): 3738–3743. https://doi.org/10.1002/2014GL060029. [Google Scholar]
- Mazur J, O’Brien T, Looper M. 2023. The relativistic proton spectrometer: a review of sensor performance, applications, and science. Space Sci Rev 219(3): 26. https://doi.org/10.1007/s11214-023-00962-2. [Google Scholar]
- Moses D. 1987. Jovian electrons at 1 AU-1978–1984. Astrophys J 313: 471–486. [CrossRef] [Google Scholar]
- Murphy D, Ulyanov A, McBreen S, Mangan J, Dunwoody R, et al. 2022. A compact instrument for gamma-ray burst detection on a Cubesat platform II: detailed design, assembly and validation. Exp Astron 53(3): 961–990. https://doi.org/10.1007/s10686-022-09842-z. [Google Scholar]
- Ozeke L, Mann I, Olifer L, Chakraborty S, Pettit J. 2024. The relationship between electron precipitation and the population of trapped electrons in LEO: New evidence supporting a natural limit to the flux of energetic electrons. J Geophys Res Space Phys 129(5): e2023JA031964. https://doi.org/10.1029/2023JA031964. [Google Scholar]
- Pulkkinen T. 2007. Space weather: terrestrial perspective. Living Rev Solar Phys 4(1): 1. https://doi.org/10.12942/lrsp-2007-1. [Google Scholar]
- Shea M, Smart D. 2012. Space weather and the ground-level solar proton events of the 23rd solar cycle. Space Sci Rev 171(1): 161–188. https://doi.org/10.1007/s11214-012-9923-z. [Google Scholar]
- Simpson J, Anglin J, Balogh A, Bercovitch M, Bouman J, et al. 1992. The Ulysses cosmic ray and solar particle investigation. A&AS 92(2): 365–399. [CrossRef] [Google Scholar]
- Tabata M, Adachi I, Kawai H, Kubo M, Sato T. 2012. Recent progress in silica aerogel Cherenkov radiator. Phys Procedia 37: 642–649. https://doi.org/10.1016/j.phpro.2012.02.410. [Google Scholar]
- Wurm M. 2017. Solar neutrino spectroscopy. Phys Rep 685: 1–52. https://doi.org/10.1016/j.physrep.2017.04.002. [Google Scholar]
- Yang H, Hao L, Wang J, Zhang Z, Liu X, Jiang L. 2015. Self-cleaning and antireflective films for all-glass evacuated tube solar collectors. Energy Procedia 69: 226–232. https://doi.org/10.1016/j.egypro.2015.03.026. [Google Scholar]
- Zheng X, Gao H, Wen J, Zeng M, Pan X, et al. 2022. In-orbit radiation damage characterization of SiPMs in the GRID-02 CubeSat detector. Nucl Instrum Methods Phys Res A 1044, 167510. https://doi.org/10.1016/j.nima.2022.167510. [Google Scholar]
- Zheng Y, Ganushkina NY, Jiggens P, Jun I, Meier M, et al. 2019. Space radiation and plasma effects on satellites and aviation: quantities and metrics for tracking performance of space weather environment models. Space Weather 17(10): 1384–1403. https://doi.org/10.1029/2018SW002042. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.