Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
Topical Issue - Observing, modelling and forecasting TIDs and mitigating their impact on technology
|
|
---|---|---|
Article Number | 28 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2025024 | |
Published online | 08 July 2025 |
- Afraimovich EL. 2008. First GPS-TEC evidence for the wave structure excited by the solar terminator. Earth Planets Space 60: 895–900. https://doi.org/10.1186/BF03352843. [CrossRef] [Google Scholar]
- Altadill D, Segarra A, Blanch E, Juan JM, Paznukhov V, Buresova D, Galkin I, Reinisch BW, A Belehaki. 2020. A method for real-time identification and tracking of traveling ionospheric disturbances using ionosonde data: First results. J Space Weather Space Clim 10: 2. https://doi.org/10.1051/swsc/2019042. [Google Scholar]
- Araki T. 2014. Historically largest geomagnetic sudden commencement (SC) since 1868. Earth Planets Space 66: 164. https://doi.org/10.1186/s40623-014-0164-0. [CrossRef] [Google Scholar]
- Belehaki A, Tsagouri I, Altadill D, Blanch D, Borries C, et al. 2020. An overview of methodologies for real-time detection, characterisation and tracking of traveling ionospheric disturbances developed in the TechTIDE project. J Space Weather Space Clim 10: 42. https://doi.org/10.1051/swsc/2020043. [Google Scholar]
- Borries C, Jakowski N, Wilken V. 2009. Storm induced large scale TIDs observed in GPS derived TEC. Ann Geophys 27(4): 1605–1612. https://doi.org/10.5194/angeo-27-1605-2009. [CrossRef] [Google Scholar]
- Boška J, Šauli P, Altadill D, German Solé D, Alberca LF. 2003. Diurnal variation of gravity wave activity at midlatitudes in the ionospheric F region. Stud Geophys Geod 47: 579–586. https://doi.org/10.1023/A:1024763618505. [Google Scholar]
- Chilcote M, LaBelle J, Lind FD, Coster AJ, Miller ES, Galkin IA, Weatherwax AT. 2015. Detection of traveling ionospheric disturbances by medium-frequency Doppler sounding using AM radio transmissions. Radio Sci 50: 249–263. https://doi.org/10.1002/2014RS005617. [Google Scholar]
- Davies K. 1990. Sporadic E. In: Ionospheric radio, Peter Peregrinus Ltd., London, UK, pp.143–145. ISBN 086341186X. [Google Scholar]
- Ding F, Wan W, Liu L, Afraimovich E, Voeykov S, Perevalova N. 2008. A statistical study of Large‐scale Traveling Ionospheric Disturbances observed by GPS TEC during major magnetic storms over the years 2003–2005. J Geophys Res 113(A3): A00A01. https://doi.org/10.1029/2008JA013037. [Google Scholar]
- Essien P, Figueiredo CAOB, Takahashi H, Wrasse CM, Barros D, et al. 2021. Long-term study on medium-scale traveling ionospheric disturbances observed over the South American equatorial region. Atmosphere 12: 1409. https://doi.org/10.3390/atmos12111409. [CrossRef] [Google Scholar]
- Evans JV, Holt JM, Wand RH. 1983. A differential-Doppler study of traveling ionospheric disturbances from Millstone Hill. Radio Sci 18: 435–451. https://doi.org/10.1029/RS018i003p00435. [Google Scholar]
- Feller W. 1948. On the Kolmogorov-Smirnov limit theorems for empirical distributions. Ann Math Statist 19(2): 177–189. [CrossRef] [Google Scholar]
- Ferreira AA, Borries C, Xiong C, Borges RA, Mielich J, et al. 2020. Identification of potential precursors for the occurrence of Large-Scale Traveling Ionospheric Disturbances in a case study during September 2017. J Space Weather Space Clim 10: 32. https://doi.org/10.1051/swsc/2020029. [Google Scholar]
- Fuller-Rowell TJ, Codrescu MV, Moffett RJ, Quegan S. 1994. Response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res 99: 3893–3914. https://doi.org/10.1029/93JA02015. [Google Scholar]
- Fukao S, Yamamoto Y, Oliver WL, Takami T, Yamanaka MD, Yamamoto M, Nakamura T, Tsuda T. 1991. Middle and upper atmosphere radar observations of ionospheric horizontal gradients produced by gravity waves. J Geophys Res 98: 9443–9451. https://doi.org/10.1029/92JA02846. [Google Scholar]
- Galushko VG, Paznukhov VV, Yampolski YM, Foster JC. 1998. Incoherent scatter radar observations of AGW/TID events generated by the moving solar terminator. Ann Geophys 16: 821–827. https://doi.org/10.1007/s00585-998-0821-3. [CrossRef] [Google Scholar]
- Haldoupis Ch. 2012. Midlatitude Sporadic E. A typical paradigm of atmosphere-ionosphere coupling. Space Sci Rev 168: 441–461. https://doi.org/10.1007/s11214-011-9786-8. [Google Scholar]
- Haralambous H, Guerra M, Chum J, Verhulst TGW, Barta V, et al. 2023. Multi-instrument observations of various ionospheric disturbances caused by the 6 February 2023 Turkey earthquake. J Geophys Res Space Phys 128: e2023JA031691. https://doi.org/10.1029/2023JA031691. [Google Scholar]
- Hines CO. 1960. Internal atmospheric gravity waves at ionospheric heights. Can J Phys 38(11): 1441–1481. https://doi.org/10.1139/p60-150. [CrossRef] [Google Scholar]
- Hocke K, Schlegel K. 1996. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann Geophys 14: 917–940. https://doi.org/10.1007/s00585-996-0917-6. [Google Scholar]
- Hunsucker RD. 1982. Atmospheric gravity waves generated in the high-latitude ionosphere: a review. Rev Geophys Space Phys 20: 293–315. https://doi.org/10.1029/RG020i002p00293. [Google Scholar]
- Jacobson AR, Carlos RC, Massey RS, Wu G. 1995. Observations of traveling ionospheric disturbances with a satellite-beacon radio interferometer: seasonal and local time behavior. J Geophys Res 100: 1653–1665. https://doi.org/10.1029/94JA02663. [Google Scholar]
- Kirchengast G, Hocke K, Schlegel K. 1996. The gravity wave-TID relationship: insight via theoretical model-EISCAT data comparison. J Atmos Terr Phys 58: 233–243. https://doi.org/10.1016/0021-9169(95)00032-1. [Google Scholar]
- Kishore A, Kumar S. 2023. Large scale traveling ionospheric disturbances during geomagnetic storms of 17 March and 23 June 2015 in the Australian region. J Geophys Res Space Phys 128: e2023JA031740. https://doi.org/10.1029/2023JA031740. [Google Scholar]
- MacDougall JW, Jayachandran PT. 2011. Solar terminator and auroral sources for traveling ionospheric disturbances in the midlatitude F region. J Atmos Terr Phys 73: 2437–2443. https://doi.org/10.1016/j.jastp.2011.10.009. [Google Scholar]
- Matzka J, Stolle C, Yamazaki Y, Bronkalla O, Morschhauser A. 2021. The geomagnetic Kp index and derived indices of geomagnetic activity. Space Weather 19: e2020SW002641. https://doi.org/10.1029/2020SW002641. [CrossRef] [Google Scholar]
- Morgan MG, Calderon CHJ, Ballard KA. 1978. Techniques for the study of TID’s with multi-station rapid-run ionosondes. Radio Sci, 13: 729–741. https://doi.org/10.1029/RS013i004p00729. [Google Scholar]
- Nose M, Iyemori T, Sugiura M, Kamei T. 2015. Geomagnetic AE index. World Data Center for Geomagnetism, Kyoto. https://doi.org/10.17593/15031-54800. [Google Scholar]
- Nykiel G, Ferreira A, Gunzkofer F, Iochem P, Tasnim S, Sato H. 2024. Large‐Scale Traveling Ionospheric Disturbances over the European sector during the geomagnetic storm on March 23–24, 2023: Energy deposition in the source regions and the propagation characteristics. J Geophys Res Space Phys 129: e2023JA032145. https://doi.org/10.1029/2023JA032145. [Google Scholar]
- Ondoh T, Nakamura Y. 1980. Solar cycle effect of 27-day recurrent geomagnetic storms. In: Solar-Terrestrial Predictions Proceedings, vol. IV, Donnely RF (Ed.), Space Environment Laboratory, Boulder, CO, pp. A-46–A-52. [Google Scholar]
- Paznukhov V, Altadill D, Reinisch BW. 2009. Experimental evidence for the role of the neutral wind in the development of ionospheric storms in midlatitudes. J Geophys Res 114: A12319. https://doi.org/10.1029/2009JA014479. [Google Scholar]
- Paznukhov V, Altadill D, Juan JM, Blanch E. 2020. Ionospheric tilt measurements: application to traveling ionospheric disturbances climatology study. Radio Sci 55: e2019RS007012. https://doi.org/10.1029/2019RS007012. [Google Scholar]
- Press WH, Teukolsky SA, Flannery BP. 1992. Numerical recipes in Fortran 77: the art of scientific computing, 2nd edn. Cambridge University Press, New York, USA. [Google Scholar]
- Prölss GW. 1993. Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes. J Geophys Res 98: 5981–5991. https://doi.org/10.1029/92JA02777. [Google Scholar]
- Prölss GW, Ocko M. 2000. Propagation of upper atmospheric storm effects towards lower latitudes. Adv Space Res 26(1): 131–135. https://doi.org/10.1016/S0273-1177(99)01039-X. [CrossRef] [Google Scholar]
- Raitt WJ, Clark DH. 1973. Wave-like disturbances in the ionosphere. Nature 243: 508–509. https://doi.org/10.1038/243508a0. [Google Scholar]
- Reinisch BW, Galkin I, Belehaki A, Paznukhov V, Huang X, et al. 2018. Pilot ionosonde network for identification of traveling ionospheric disturbances. Radio Sci 53: 365–378. https://doi.org/10.1002/2017RS006263. [Google Scholar]
- Reinisch BW, Galkin IA, Khmyrov GM, Kozlov AV, Bibl K, et al. 2009. New Digisonde for research and monitoring applications. Radio Sci 44: RS0A24. https://doi.org/10.1029/2008RS004115. [Google Scholar]
- Reinisch BW, Galkin I. 2011. Global ionospheric radio observatory (GIRO). Earth Planets Space 63: 377–381. https://doi.org/10.5047/eps.2011.03.001. [CrossRef] [Google Scholar]
- Segarra A, Altadill D, de Paula V, Navas-Portella V. 2024. Catalogue LSTID. CORA.Repositori de Dades de Recerca, V1. https://doi.org/10.34810/data1383. [Google Scholar]
- Somsikov VM. 1983. Solar terminator and dynamics of the atmosphere. Nauka, Alma-Ata (former URSS). [Google Scholar]
- Somsikov VM. 2011. Solar terminator and dynamic phenomena in the atmosphere: A review. Geomagn Aeron 51(6): 707–719. https://doi.org/10.1134/s0016793211060168. [Google Scholar]
- Song Q, Ding F, Wan W, Ning B, Liu L, Zhao B, Li Q, Zhang R. 2013. Statistical study of large-scale traveling ionospheric disturbances generated by the solar terminator over China. J Geophys Res Space Phys 118(7): 4583–4593. https://doi.org/10.1002/jgra.50423. [Google Scholar]
- Tsagouri I, Belehaki A, Koutroumbas K, Tziotziou K, Herekakis T. 2023. Identification of large-scale travelling ionospheric disturbances (LSTIDs) based on digisonde observations., Atmosphere 14: 331. https://doi.org/10.3390/atmos14020331. [CrossRef] [Google Scholar]
- Tsugawa T, Saito A, Otsuka Y. 2004. A statistical study of large-scale traveling ionospheric disturbances using the GPS network in Japan. J Geophys Res 109: A06302. https://doi.org/10.1029/2003JA010302. [CrossRef] [Google Scholar]
- Tsunoda RT, Cosgrove RT. 2001. Coupled electrodynamics in the nighttime midlatitude ionosphere., Geophys Res Lett 28: 4171–4174. https://doi.org/10.1029/2001GL013245. [Google Scholar]
- Verhulst TGW, Altadill D, Barta V, Belehaki A, Burešová D, et al. 2022. Multi-instrument detection in Europe of ionospheric disturbances caused by the 15 January 2022 eruption of the Hunga volcano. J Space Weather Space Clim 12: 35. https://doi.org/10.1051/swsc/2022032. [Google Scholar]
- Waldock JA, Jones TB. 1986. HF Doppler observations of medium-scale traveling ionospheric disturbances observed at mid-latitudes. J Atmos Terr Phys 48: 245–260. https://doi.org/10.1016/0021-9169(86)90099-1. [Google Scholar]
- Zhang R, Chen G, Li Y, Zhang S, Gong W, He Z, Zhang M. 2021. Long-term observation of the quasi-3-hour large-scale traveling ionospheric disturbances by the oblique-incidence ionosonde network in North China. Sensors 22(1): 233. https://doi.org/10.3390/s22010233. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.