Open Access
| Issue |
J. Space Weather Space Clim.
Volume 15, 2025
|
|
|---|---|---|
| Article Number | 47 | |
| Number of page(s) | 22 | |
| DOI | https://doi.org/10.1051/swsc/2025042 | |
| Published online | 31 October 2025 | |
- Achard, F, G D’Souza. 1994. Collection and pre-processing of NOAA-AVHRR 1 km resolution data for tropical forest resource assessment. In: Tech. Rep. Report EUR 16055 EN.European Commission, ECSC-EC-EAEC, Brussels. https://op.europa.eu/en/publication-detail/-/publication/15b97b3e-cd63-4370-9fbd-bab1305a9eb1. [Google Scholar]
- Bruevich, E, Bruevich V, Yakunina G. 2014. Changed relation between solar 10.7-cm Radio flux and some activity indices which describe the radiation at different altitudes of atmosphere during cycles 21–23. J Astrophys Astron 35: 1–15. https://doi.org/10.1007/s12036-014-9258-0. [Google Scholar]
- Camps, A, Vall-llossera M, Duffo N, Zapata M, Corbella I, Torres F, Barrena V. 2004. Sun effects in 2-D aperture synthesis radiometry imaging and their cancelation. IEEE Trans Geosci Rem Sens 42 1161–1167. https://doi.org/10.1109/TGRS.2004.826561. [Google Scholar]
- Corbella, I, Torres F, Duffo N, Duran I, Gonzalez-Gambau V, Martin-Neira M. 2019. Wide field of view microwave interferometric radiometer imaging. Rem Sens 11 (6): 682. https://doi.org/10.3390/rs11060682. [Google Scholar]
- Corbella, I, Ubeda N, Vall-llossera M, Camps A, Torres F. 2004. The visibility function in interferometric aperture synthesis radiometry. IEEE Trans Geosci Rem Sens 42: 1677–1682. https://doi.org/10.1109/TGRS.2004.830641. [Google Scholar]
- Covington, AE. 1969. Solar radio emission at 10.7 cm, 1947–1968. J Roy Astron Soc Can 63: 125. [Google Scholar]
- Crapolicchio R, Capolongo E, Bigazzi A. 2016. Sun L-band brightness temperature estimate from Soil Moisture and Ocean Salinity (SMOS) Mission: A Potential New Space Weather Application for SMOS Data. In: Living Planet Symposium, Proceedings of the conference held 9–13 May 2016 in Prague, Czec Republic, Ouwehand L (Ed.), Vol. 740, ESA-SP, pp. 81. ISBN: 978-92-9221-305-3. [Google Scholar]
- Crapolicchio R., Casella D, Marqué C. 2018. Solar Radio Observations from Soil Moisture and Ocean Salinity (SMOS) Mission. In: IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, pp. 4111–4114. https://doi.org/10.1109/IGARSS.2018.8518756. [Google Scholar]
- Dudok de Wit, T, Bruinsma S. 2017. The 30 cm radio flux as a solar proxy for thermosphere density modelling. J Space Weather Space Clim, 7: A9. https://doi.org/10.1051/swsc/2017008. [CrossRef] [EDP Sciences] [Google Scholar]
- Dudok de Wit, T, Bruinsma S, Shibasaki K. 2014. Synoptic radio observations as proxies for upper atmosphere modelling. J Space Weather Space Clim 4: A06. https://doi.org/10.1051/swsc/2014003. [CrossRef] [EDP Sciences] [Google Scholar]
- Dudok de Wit, T, Lefèvre L, Clette F. 2016. Uncertainties in the sunspot numbers: estimation and implications. Sol Phys 9–10: 2709–2731. https://doi.org/10.1007/s11207-016-0970-6. [Google Scholar]
- Dudok de Wit, T, Moussaoui S, Guennou C, Auchère F, Cessateur G, Kretzschmar M, Vieira L, Goryaev F. 2012. Coronal temperature maps from solar EUV images: a blind source separation approach. Sol Phys 283: 31–47. https://doi.org/10.1007/s11207-012-0142-2. [Google Scholar]
- Flores-Soriano, M. 2024. Solar radio bursts impact on the International GNSS Service Network during Solar Cycle 24. J Space Weather Space Clim 14: 32. https://doi.org/10.1051/swsc/2024034. [Google Scholar]
- Flores-Soriano, M, Cid C, Crapolicchio R. 2021. Validation of the SMOS mission for space weather operations: the potential of near real-time solar observation at 1.4 GHz. Space Weather 19: e2020SW002649. 10.1029/2020SW002649. [CrossRef] [Google Scholar]
- Garcìa, RD, Oliva R, Crapolicchio R, Neira MM. 2022. SMOS v724 third mission reprocessing: brightness temperature quality and stability. IEEE Trans Geosci Rem Sens 60: 5305010. https://doi.org/10.1109/TGRS.2022.3206118. [Google Scholar]
- Giersch, O, Kennewell J. 2022. Analysis of the radio solar telescope network’s noon flux observations over three solar cycles (1988–2020). Radio Sci 57: e2022RS007456. https://doi.org/10.1029/2022RS007456. [Google Scholar]
- Gutierrez A, Barbosa J, Almeida N, Catarino N, Freitas J, Ventura M, Reis J, Zundo M. 2007. SMOS L1 processor prototype: From digital counts to brightness temperatures. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 3626–3630. https://doi.org/10.1109/IGARSS.2007.4423631. [Google Scholar]
- Hathaway, DH. 2015. The solar cycle. Liv Rev Sol Phys 12: 4. https://doi.org/10.1007/lrsp-2015-4. [Google Scholar]
- Holland, RL, Vaughan WW. 1984. Lagrangian least-squares prediction of solar flux. J Geophys Res Space Phys 89 (A1): 11–16. https://doi.org/10.1029/JA089iA01p00011. [Google Scholar]
- Kaplan, K. 2024. The characteristic properties of solar activity in Solar Cycle 24, Kinemat Phys Celest Bodies 40: 105–115. https://doi.org/10.3103/S0884591324020041. [Google Scholar]
- Kerr, Y, Font J, Philippe W, Camps A, Temes J, Corbella I, Torres F, Ubeda N, Vallilossera M, Caudal G. 2000. New radiometers: SMOS-a dual pol L-band 2D aperture synthesis radiometer. IEEE Aerospace Conf Proc 5: 119–128. https://doi.org/10.1109/AERO.2000.878481. [Google Scholar]
- Kerr, YH, Waldteufel P, Wigneron J-P, Delwart S, Cabot F, et al. 2009. The SMOS mission: new tool for monitoring key elements of the global water cycle. Proc IEEE 98: 1354–1366. https://doi.org/10.1109/JPROC.2010.2043032. [Google Scholar]
- Khazaal, A, Cabot F, Anterrieu E, Kerr YH. 2020. A new direct Sun Correction Algorithm for the soil moisture and ocean salinity space mission. IEEE J Sel Top Appl Earth Obs Remote Sens 13: 1164–1173. https://doi.org/10.1109/JSTARS.2020.2971063. [CrossRef] [Google Scholar]
- Kintner, PMJ, O’Hanlon B, Gary DE, Kintner PMS. 2009. Global Positioning System and solar radio burst forensics. Radio Sci 44: RS0A08. https://doi.org/10.1029/2008RS004039. [Google Scholar]
- Lomb, NR. 1976. Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci, 39: 447–462. https://doi.org/10. [CrossRef] [Google Scholar]
- Martin-Neira M, Oliva R, Onrubia R, Corbello I, Duffo N, et al. . 2021. SMOS instrument performance after more than 11 years in Orbit. In: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, pp. 7744–7747. doi: 10.1109/IGARSS47720.2021.9554206 [Google Scholar]
- Mecklenburg, S, Drusch M, Kaleschke L, Rodriguez-Fernandez N, Reul N, et al. 2016. ESA’s Soil Moisture and Ocean Salinity mission: From science to operational applications. Rem Sens Environ 180: 3–18. https://doi.org/10.1016/j.rse.2015.12.025. [Google Scholar]
- Mecklenburg, S, Drusch M, Kerr Y, Martin Neira M, Steven D, Buenadicha G, Reul N, Daganzo E, Oliva R, Crapolicchio R. 2012. ESA’s Soil Moisture and Ocean Salinity Mission: Mission Performance and Operations. IEEE Trans Geosci Rem Sens 50: 1354–1366. https://doi.org/10.1109/TGRS.2012.2187666. [Google Scholar]
- Morosan, DE, Rasanen JE, Kumari A, Kilpua EKJ, Bisi MM, et al. 2022. Exploring the circular polarisation of low-frequency solar radio bursts with LOFAR. Sol Phys 297: 47. https://doi.org/10.1007/s11207-022-01976-9. [Google Scholar]
- Nita, GM, Gary DE, Lanzerotti LJ. 2004. Statistics of solar microwave radio burst spectra with implications for operations of microwave radio systems. Space Weather 2 (11): S11005. https://doi.org/10.1029/2004SW000090. [Google Scholar]
- Oberoi, D, Sharma R, Rogers A. 2017.Estimating solar flux density at low radio frequencies using a sky brightness model. Sol Phys 292: 1–16. https://doi.org/10.1007/s11207-017-1096-1. [CrossRef] [Google Scholar]
- Pulupa, M, Bale SD, Jebaraj IC, Romeo O, Krucker S. 2025. Highly polarized type III storm observed with Parker Solar Probe. Astrophys J Lett 987: 34. https://doi.org/10.3847/2041-8213/ade5a8. [Google Scholar]
- Reul, N, Tenerelli J, Chapron B, Waldteufel P. 2007. Modeling sun glitter at L-band for sea surface salinity remote sensing with SMOS, IEEE Trans Geosci Rem Sens 45 (7): 2073–2087. https://doi.org/10.1109/TGRS.2006.890421. [Google Scholar]
- Sato, H, Jakowski N, Berdermann J, Jiricka K, Heßelbarth A, Banys D, Wilken V. 2019. Solar Radio Burst Events on 6 September 2017 and its impact on GNSS signal frequencies. Space Weather 17 (6): 816–826. https://doi.org/10.1029/2019SW002198. [CrossRef] [Google Scholar]
- Selhorst, C, Silva A, Costa J. 2004. Radius variations over a solar cycle. Astron Astrophys 420 (3): 1117–1121. https://doi.org/10.1051/0004-6361:20034382. [Google Scholar]
- Shimojo, M, Iwai K, Asai A, Nozawa S, Minamidani T, Saito M. 2017. Variation of solar microwave spectrum in the last half century. Astrophys J 848: 62. https://doi.org/10.3847/1538-4357/aa8c75. [Google Scholar]
- Tanaka, H, Castelli J, Covington A, Krüger A, Landecker T, Tlamicha A. 1973. Absolute calibration of solar radio flux density in the microwave region. Sol Phys 29: 243–262. https://doi.org/10.1007/BF00153452. [Google Scholar]
- Tapping, K. 1987. Recent solar radio astronomy at centimeter wavelengths: The temporal variability of the 10.7-cm flux. J Geophys Res Atmos 92 (D1): 829–838. [Google Scholar]
- Tapping, K, Charrois D. 1994. Limits to the accuracy of the 10.7 cm flux. Sol Phys 150: 305–315. https://doi.org/10.1007/BF00712892. [Google Scholar]
- Viereck, R, Puga L, Mcmullin D, Judge D, Weber M, Tobiska WK. 2001. The Mg II index: a proxy for solar EUV. Geophys Res Lett 28: 1343–1346. https://doi.org/10.1029/2000GL012551. [Google Scholar]
- Viereck, RA, Floyd LE, Crane PC, Woods TN, Knapp BG, Rottman G, Weber M, Puga LC, DeLand MT. 2004. A composite Mg II index spanning from 1978 to 2003. Space Weather 2 (10): S10005. https://doi.org/10.1029/2004SW000084. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
