Issue |
J. Space Weather Space Clim.
Volume 5, 2015
|
|
---|---|---|
Article Number | A10 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/swsc/2015011 | |
Published online | 27 May 2015 |
Research Article
Numerical model for computation of effective and ambient dose equivalent at flight altitudes
Application for dose assessment during GLEs
1
ReSoLVE Center of Excellence, University of Oulu, Finland
2
Sodankylä Geophysical Observatory (Oulu Unit), University of Oulu, Finland
* Corresponding author: alex_mishev@yahoo.com
Received:
8
December
2014
Accepted:
20
April
2015
A numerical model for assessment of the effective dose and ambient dose equivalent produced by secondary cosmic ray particles of galactic and solar origin at commercial aircraft altitudes is presented. The model represents a full chain analysis based on ground-based measurements of cosmic rays, from particle spectral and angular characteristics to dose estimation. The model is based on newly numerically computed yield functions and realistic propagation of cosmic ray in the Earth magnetosphere. The yield functions are computed using a straightforward full Monte Carlo simulation of the atmospheric cascade induced by primary protons and α-particles and subsequent conversion of secondary particle fluence (neutrons, protons, gammas, electrons, positrons, muons and charged pions) to effective dose or the ambient dose equivalent. The ambient dose equivalent is compared with reference data at various conditions such as rigidity cut-off and level of solar activity. The method is applied for computation of the effective dose rate at flight altitude during the ground level enhancement of 13 December 2006. The solar proton spectra are derived using neutron monitor data. The computation of the effective dose rate during the event explicitly considers the derived anisotropy i.e. the pitch angle distribution as well as the propagation of the solar protons in the magnetosphere of the Earth.
Key words: Atmospheric cascade simulation / Yield function / Effective dose rate / Ambient dose equivalent / Ground level enhancement
© A. Mishev and I. Usoskin, Published by EDP Sciences 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.