Open Access
J. Space Weather Space Clim.
Volume 5, 2015
Article Number A10
Number of page(s) 16
Published online 27 May 2015
  • Agostinelli, S., J. Allison, and K. Amako. Geant4 – a simulation toolkit. Nucl. Instrum. Methods Phys. Res.: Sect. A, 506 (3), 250–303, 2003, DOI: 10.1016/S0168-9002(03)01368-8. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Al Anid, H., B. Lewis, L. Bennett, M. Takada, and M. Duldig. Aircrew radiation dose estimates during recent solar particle events and the effect of particle anisotropy. Radiat. Prot. Dosim., 158 (3), 355–367, 2014, DOI: 10.1093/rpd/nct234. [CrossRef] [Google Scholar]
  • Aschwanden, M. GeV particle acceleration in solar flares and ground level enhancement (GLE) events. Space Sci. Rev., 171 (1-4), 3–21, 2012, DOI: 10.1007/s11214-011-9865-x. [NASA ADS] [CrossRef] [Google Scholar]
  • Baker, D. What is space weather? Adv. Space Res., 22 (1), 7–16, 1998. [CrossRef] [Google Scholar]
  • Ballarini, F., D. Alloni, A. Facoetti, A. Mairani, R. Nano, and A. Ottolenghi. Radiation risk estimation: modelling approaches for “targeted” and “non-targeted” effects. Adv. Space Res., 40 (9), 1392–1400, 2007, DOI: 10.1016/j.asr.2007.04.021. [CrossRef] [Google Scholar]
  • Battistoni, G., S. Muraro, P. Sala, F. Cerutti, A. Ferrari, S. Roesler, A. Fasso, and J. Ranft. The FLUKA code: description and benchmarking. In: Proceedings of the Hadronic Shower Simulation Workshop 2006, 6–8 September 2006, M., Albrow and R. Raja Editors, AIP Conference, 896, 31–49, 2007. [Google Scholar]
  • Bazilevskaya, G.A., I.G. Usoskin, E. Flückiger, R. Harrison, L. Desorgher, et al. Cosmic ray induced ion production in the atmosphere. Space Sci. Rev., 137, 149–173, 2008, DOI: 10.1007/s11214-008-9339-y. [NASA ADS] [CrossRef] [Google Scholar]
  • Beck, P. Overview of research on aircraft crew dosimetry during the last solar cycle. Radiat. Prot. Dosim., 136 (4), 244–250, 2009, DOI: 10.1093/rpd/ncp158. [CrossRef] [Google Scholar]
  • Bennett, L., B. Lewis, B. Bennett, M. McCall, M. Bean, L. Dor, and I. Getley. Cosmic radiation exposure survey of an air force transport squadron. Radiat. Meas., 48 (1), 35–42, 2013a, DOI: 10.1016/j.radmeas.2012.10.012. [CrossRef] [Google Scholar]
  • Bennett, L., B. Lewis, B. Bennett, M. McCall, M. Bean, L. Dor, and I. Getley. A survey of the cosmic radiation exposure of Air Canada pilots during maximum galactic radiation conditions in 2009. Radiat. Meas., 49 (1), 103–108, 2013b, DOI: 10.1016/j.radmeas.2012.12.004. [CrossRef] [Google Scholar]
  • Bolzan, A., M. Bianchi, E. Gimenez, M. Flaque, and V. Ciancio. Analysis of spontaneous and bleomycin-induced chromosome damage in peripheral lymphocytes of long-haul aircrew members from Argentina. Mutation Research – Fundamental and Molecular Mechanisms of Mutagenesis, 639 (1–2), 64–79, 2008, DOI: 10.1016/j.mrfmmm.2007.11.003. [CrossRef] [Google Scholar]
  • Bombardieri, D., M. Duldig, K. Michael, and J. Humble. Relativistic proton production during the 2000 July 14 solar event: the case for multiple source mechanisms. Astrophys. J., 644 (1), 565–574, 2006, DOI: 10.1086/501519. [CrossRef] [Google Scholar]
  • Bostanjyan, N., A. Chilingarian, V. Eganov, and G. Karapetyan. On the production of highest energy solar protons at 20 January 2005. Adv. Space Res., 39 (9), 1456–1459, 2007, DOI: 10.1016/j.asr.2007.03.024. [CrossRef] [Google Scholar]
  • Briesmeister, J. MCNP A general Monte Carlo Transport code (version 4B). Tech. Rep. LA 12625-M, Los Alamos National Laboratory, 1997. [Google Scholar]
  • Bütikofer, R., and E. Flückiger. Differences in published characteristics of GLE60 and their consequences on computed radiation dose rates along selected flight paths. J. Phys: Conf. Ser., 409 (1), 012166, 2013. [CrossRef] [Google Scholar]
  • Bütikofer, R., E. Flückiger, L. Desorgher, M. Moser, and B. Pirard. The solar cosmic ray ground-level enhancements on 20 January 2005 and 13 December 2006. Adv. Space Res., 43 (4), 499–503, 2009, DOI: 10.1016/j.asr.2008.08.001. [CrossRef] [Google Scholar]
  • Caballero-Lopez, R., and H. Moraal. Limitations of the force field equation to describe cosmic ray modulation. J. Geophys. Res., 109, A01101, 2004, DOI: 10.1029/2003JA010098. [Google Scholar]
  • Clem, J. Contribution of Obliquely incident particles to neutron monitor counting rate. J. Geophys. Res., 102, 919, 1997. [Google Scholar]
  • Cliver, E., S. Kahler, and D. Reames. Coronal shocks and solar energetic proton events. Astrophys. J., 605, 902–910, 2004, DOI: 10.1086/382651. [NASA ADS] [CrossRef] [Google Scholar]
  • Cooke, D., J. Humble, M. Shea, D. Smart, N. Lund, I. Rasmussen, B. Byrnak, P. Goret, and N. Petrou. On cosmic-ray cutoff terminology. IL Nuovo Cimento C, 14 (3), 213–234, 1991. [Google Scholar]
  • Cramp, J., M. Duldig, E. Flückiger, J. Humble, M. Shea, and D. Smart. The October 22, 1989, solar cosmic ray enhancement: an analysis of the anisotropy spectral characteristics. J. Geophys. Res., 102 (A11), 24237–24248, 1997. [NASA ADS] [CrossRef] [Google Scholar]
  • Desorgher, L., E. Flückiger, M. Gurtner, M. Moser, and R. Bütikofer. A Geant 4 code for computing the interaction of cosmic rays with the Earth’s atmosphere. Int. J. Mod. Phys. A, 20 (A11), 6802, 2005, DOI: 10.1142/S0217751X05030132. [NASA ADS] [CrossRef] [Google Scholar]
  • Desorgher, L., K. Kudela, E. Flückiger, R. Bütikofer, M. Storini, and V. Kalegaev. Comparison of Earth’s magnetospheric magnetic field models in the context of cosmic ray physics. Acta Geophys., 57 (1), 75–87, 2009, DOI: 10.2478/s11600-008-0065-3. [CrossRef] [Google Scholar]
  • Dorman, L. Cosmic Rays in the Earth’s Atmosphere Underground, Kluwer Academic Publishers, Dordrecht, ISBN 1-4020-2071-6, 2004. [CrossRef] [Google Scholar]
  • Dos Santos Silva, I., B. De Stavola, C. Pizzi, A. Evans, and S. Evans. Cancer incidence in professional flight crew and air traffic control officers: disentangling the effect of occupational versus lifestyle exposures. International Journal of Cancer, 132 (2), 374–384, 2013, DOI: 10.1002/ijc.27612. [CrossRef] [Google Scholar]
  • Drozdov, A., A. Grigoriev, and Y. Malyshkin. Assessment of thunderstorm neutron radiation environment at altitudes of aviation flights. J. Geophys. Res. [Space Phys.], 118 (2), 947–955, 2013, DOI: 10.1029/2012JA018302. [CrossRef] [Google Scholar]
  • Dwyer, J.R., D.M. Smith, M.A. Uman, Z. Saleh, B. Grefenstette, B. Hazelton, and H.K. Rassoul. Estimation of the fluence of high-energy electron bursts produced by thunderclouds and the resulting radiation doses received in aircraft. J. Geophys. Res. [Atmos.], 115 (D9), 2010, DOI: 10.1029/2009JD012039. [Google Scholar]
  • EURATOM. Council Directive 96/29/EURATOM of 13 May 1996 laying down basic safety standards for protection of the health of workers and the general public against the dangers arising from ionising radiation. Official Journal of the European Communities, 39 (L159), 1996. [Google Scholar]
  • Fasso, A., A. Ferrari, J. Ranft, and P. Sala. FLUKA: a multi-particle transport code. SLAC-R-773 2005-10, CERN, CERN, Geneva, 2005. [Google Scholar]
  • Ferrari, A., M. Pelliccioni, and T. Rancati. Calculation of the radiation environment caused by galactic cosmic rays for determining air crew exposure. Radiat. Prot. Dosim., 93 (2), 101–114, 2001. [CrossRef] [Google Scholar]
  • Forbush, S. Cosmic-ray intensity variations during two solar cycles. J. Geophys. Res., 63 (4), 651–669, 1958. [CrossRef] [Google Scholar]
  • Gaisser, T.K., and T. Stanev. Cosmic rays. In: K. N. et al., ed., Review of Particle Physics, 269–275, J. Phys. G, 37, 269–275, 2010. [Google Scholar]
  • Gleeson, L., and W. Axford. Solar modulation of galactic cosmic rays. Astrophys. J., 154, 1011–1026, 1968. [NASA ADS] [CrossRef] [Google Scholar]
  • Hammer, G., M. Blettner, and H. Zeeb. Epidemiological studies of cancer in aircrew. Radiat. Prot. Dosim., 136 (4), 232–239, 2009, DOI: 10.1093/rpd/ncp125. [CrossRef] [Google Scholar]
  • ICRP. ICRP Publication 60: 1990 recommendations of the international commission on radiological protection. Ann. ICRP, 21 (1–3), 1991. [Google Scholar]
  • ICRP. ICRP Publication 103: the 2007 recommendations of the international commission on radiological protection. Ann. ICRP, 37 (2–4), 2007. [Google Scholar]
  • ICRP. ICRP Publication 110: adult reference computational phantoms. Ann. ICRP, 39 (2), 2009. [Google Scholar]
  • Iwase, H., K. Niita, and T. Nakamura. Development of general-purpose particle and heavy ion transport Monte Carlo code. J. Nucl. Sci. Technol., 39 (11), 1142–1151, 2002. [CrossRef] [Google Scholar]
  • Kawrakow, I. Electron impact ionization cross sections for EGSnrc. Med. Phys., 29, 1230, 2001. [Google Scholar]
  • Kovaltsov, G., A. Mishev, and I. Usoskinc. A new model of cosmogenic production of radiocarbon 14C in the atmosphere. Earth Planet. Sci. Lett., 337, 114–120, 2012, DOI: 10.1016/j.epsl.2012.05.036. [NASA ADS] [CrossRef] [Google Scholar]
  • Kudela, K., R. Bučik, and P. Bobik. On transmissivity of low energy cosmic rays in disturbed magnetosphere. Adv. Space Res., 42 (7), 1300–1306, 2008, DOI: 10.1016/j.asr.2007.09.033. [CrossRef] [Google Scholar]
  • Kudela, K., and I. Usoskin. On magnetospheric transmissivity of cosmic rays. Czech. J. Phys., 54 (2), 239–254, 2004, DOI: 10.1023/B:CJOP.0000014405.61950.e5. [Google Scholar]
  • Langel, R. Main Field in Geomagnetism. In: Geomagnetism, chap. 1, 249–512, J.A. Jacobs Academic Press, London, 1987. [Google Scholar]
  • Lewis, B., L. Bennett, A. Green, A. Butler, M. Desormeaux, F. Kitching, M. McCall, B. Ellaschuk, and M. Pierre. Aircrew dosimetry using the Predictive Code for Aircrew Radiation Exposure (PCAIRE). Radiat. Prot. Dosim., 116 (1–4), 320–326, 2005, DOI: 10.1093/rpd/nci024. [CrossRef] [Google Scholar]
  • Lilensten, J., and A. Belehaki. Developing the scientific basis for monitoring, modelling and predicting space weather. Acta Geophys., 57 (1), 1–14, 2009, DOI: 10.2478/s11600-008-0081-3. [CrossRef] [Google Scholar]
  • Lilensten, L., and J. Bornarel. Space Weather, Environment and Societies, Springer, Dordrecht, ISBN 978-1-4020-4332-1, 2009. [Google Scholar]
  • Matthiä, D., B. Heber, G. Reitz, L. Sihver, T. Berger, and M. Meier. The ground level event 70 on December 13th, 2006 and related effective doses at aviation altitudes. Radiat. Prot. Dosim., 136 (4), 304–310, 2009, DOI: 10.1093/rpd/ncp141. [CrossRef] [Google Scholar]
  • Matthiä, D., M. Meier, and G. Reitz. Numerical calculation of the radiation exposure from galactic cosmic rays at aviation altitudes with the PANDOCA core model. Space Weather, 12 (3), 161–171, 2014, DOI: 10.1002/2013SW001022. [CrossRef] [Google Scholar]
  • Matthiä, D., L. Sihver, and M. Meier. Monte-Carlo calculations of particle fluences and neutron effective dose rates in the atmosphere. Radiat. Prot. Dosim., 131 (2), 222–228, 2008, DOI: 10.1093/rpd/ncn130. [CrossRef] [Google Scholar]
  • Mavromichalaki, H., A. Papaioannou, C. Plainaki, C. Sarlanis, G. Souvatzoglou, et al. Applications and usage of the real-time Neutron Monitor Database. Adv. Space Res., 47, 2210–2222, 2011, DOI: 10.1016/j.asr.2010.02.019. [CrossRef] [Google Scholar]
  • McCracken, K., V. Rao, B. Fowler, M. Shea, and D. Smart. Cosmic ray tables (asymptotic directions, etc.). In: Annals of the IQSY, chap. 1, 198–214, MIT Press, Cambridge, MA, USA, 1968. [Google Scholar]
  • McCracken, K., V. Rao, and M. Shea. The trajectories of cosmic rays in a high degree simulation of the geomagnetic field. Technical Report 77, Massachusetts Institute of Technology, Cambridge, MA, USA, 1962. [Google Scholar]
  • Meier, M., M. Hubiak, D. Matthiä, M. Wirtz, and G. Reitz. Dosimetry at aviation altitudes (2006–2008). Radiat. Prot. Dosim., 136 (4), 1–35, 2009, DOI: 10.1093/rpd/ncp142. [CrossRef] [Google Scholar]
  • Menzel, H. The international commission on radiation units and measurements. Journal of the ICRU, 10 (2), 1–35, 2010. [CrossRef] [Google Scholar]
  • Mertens, C., M. Meier, S. Brown, R. Norman, and X. Xu. NAIRAS aircraft radiation model development, dose climatology, and initial validation. Space Weather, 11 (10), 603–635, 2013, DOI: 10.1002/swe.20100. [CrossRef] [Google Scholar]
  • Mishev, A. Computation of radiation environment during ground level enhancements 65, 69 and 70 at equatorial region and flight altitudes. Adv. Space Res., 54 (3), 528–535, 2014, DOI: 10.1016/j.asr.2013.10.010. [CrossRef] [Google Scholar]
  • Mishev, A., F. Adibpour, I. Usoskin, and E. Felsberger. Computation of dose rate at flight altitudes during ground level enhancements no. 69, 70 and 71. Adv. Space Res., 55 (1), 354–362, 2015, DOI: 10.1016/j.asr.2014.06.020. [CrossRef] [Google Scholar]
  • Mishev, A., and E. Hristova. Recent gamma background measurements at high mountain altitude. J. Environ. Radioact., 113, 77–82, 2012, DOI: 10.1016/j.jenvrad.2012.04.017. [CrossRef] [Google Scholar]
  • Mishev, A., L. Kocharov, and I. Usoskin. Analysis of the ground level enhancement on 17 May 2012 using data from the global neutron monitor network. J. Geophys. Res., 119, 670–679, 2014, DOI: 10.1002/2013JA019253. [NASA ADS] [CrossRef] [Google Scholar]
  • Mishev, A., and I. Usoskin. Computations of cosmic ray propagation in the Earth’s atmosphere, towards a GLE analysis. J. Phys: Conf. Ser., 409, 012152, 2013. [CrossRef] [Google Scholar]
  • Mishev, A., I. Usoskin, and G. Kovaltsov. Neutron monitor yield function: new improved computations. J. Geophys. Res., 118, 2783–2788, 2013, DOI: 10.1002/jgra.50325. [CrossRef] [Google Scholar]
  • Mishev, A., and P. Velinov. Influence of hadron and atmospheric models on computation of cosmic ray ionization in the atmosphere-Extension to heavy nuclei. J. Atmos. Sol. Terr. Phys., 120, 111–120, 2014, DOI: 10.1016/j.jastp. 2014.09.007. [CrossRef] [Google Scholar]
  • Mishev, A., and P.I. Velinov. Normalized ionization yield function for various nuclei obtained with full Monte Carlo simulations. Adv. Space Res., 48 (1), 19–24, 2011, DOI: 10.1016/j.asr.2011.02.008. [CrossRef] [Google Scholar]
  • Nevalainen, J., I. Usoskin, and A. Mishev. Eccentric dipole approximation of the geomagnetic field: application to cosmic ray computations. Adv. Space Res., 52 (1), 22–29, 2013, DOI: 10.1016/j.asr.2013.02.020. [CrossRef] [Google Scholar]
  • O’Brien, K., W. Friedberg, H. Sauer, and D. Smart. Atmospheric cosmic rays and solar energetic particles at aircraft altitudes. Environ. Int., 22 (Suppl. 1), S9–S44, 1997. [CrossRef] [Google Scholar]
  • Pelliccioni, M. Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the FLUKA Code. Radiat. Prot. Dosim., 88 (4), 279–297, 2000. [CrossRef] [Google Scholar]
  • Petoussi-Henss, N., W. Bolch, K. Eckerman, A. Endo, N. Hertel, J. Hunt, M. Pelliccioni, H. Schlattl, and M. Zankl. Conversion coefficients for radiological protection quantities for external radiation exposures. Ann. ICRP, 40 (2–5), 1–257, 2010. [CrossRef] [Google Scholar]
  • Picone, J., A. Hedin, D. Drob, and A. Aikin. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res., 107 (A12), 2002. [Google Scholar]
  • Pukkala, E., M. Helminen, T. Haldorsen, N. Hammar, K. Kojo, A. Linnersj, V. Rafnsson, H. Tulinius, U. Tveten, and A. Auvinen. Cancer incidence among Nordic airline cabin crew. International Journal of Cancer, 131 (12), 2886–2897, 2012, DOI: 10.1002/ijc.27551. [CrossRef] [Google Scholar]
  • Reames, D. Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev., 90 (3–4), 13–491, 1999. [NASA ADS] [CrossRef] [Google Scholar]
  • Roesler, S., W. Heinrich, and H. Schraube. Monte Carlo calculation of the radiation field at aircraft altitudes. Radiat. Prot. Dosim., 98 (4), 367–388, 2002. [CrossRef] [Google Scholar]
  • Sato, T., A. Endo, M. Zankl, N. Petoussi-Henss, H. Yasuda, and K. Niita. Fluence-to-dose conversion coefficients for aircrew dosimetry based on the new ICRP Recommendations. Progress in Nuclear Science and Technology, 1 , 134–137, 2011. [Google Scholar]
  • Sato, T., H. Yasuda, K. Niita, A. Endo, and L. Sihver. Development of PARMA: PHITS-based analytical radiation model in the atmosphere. Radiat. Res., 170, 244–259, 2008, DOI: 10.1667/RR1094.1. [CrossRef] [Google Scholar]
  • Schraube, H., G. Leuthold, W. Heinrich, S. Roesler, and D. Combecher. European program package for the calculation of aviation route doses, version 3.0. Tech. Rep. D-85758, National Research Center for Environment and Health Institute of Radiation Protection, Neuherberg, Germany, 2000. [Google Scholar]
  • Shea, M., and D. Smart. Possible evidence for a rigidity-dependent release of relativistic protons from the solar corona. Space Sci. Rev., 32, 251–271, 1982. [Google Scholar]
  • Shea, M., and D. Smart. A summary of major solar proton events. Sol. Phys., 127, 297–320, 1990. [NASA ADS] [CrossRef] [Google Scholar]
  • Shea, M., and D. Smart. Cosmic ray implications for human health. Space Sci. Rev., 93 (1–2), 187–205, 2000, DOI: 10.1023/A:1026544528473. [NASA ADS] [CrossRef] [Google Scholar]
  • Shea, M., and D. Smart. Space weather and the ground-level solar proton events of the 23rd solar cycle. Space Sci. Rev., 171, 161–188, 2012, DOI: 10.1007/s11214-012-9923-z. [CrossRef] [Google Scholar]
  • Shea, M., D. Smart, and K. McCracken. A study of vertical cut off rigidities using sixth degree simulations of the geomagnetic field. J. Geophys. Res., 70, 4117–4130, 1965. [CrossRef] [Google Scholar]
  • Sigurdson, A., and E. Ron. Cosmic radiation exposure and cancer risk among flight crew. Cancer Investigation, 22 (5), 743–761, 2004, DOI: 10.1081/CNV-200032767. [CrossRef] [Google Scholar]
  • Smart, D., M. Shea, and E. Flückiger. Magnetospheric models and trajectory computations. Space Sci. Rev., 93 (1), 305–333, 2000. [NASA ADS] [CrossRef] [Google Scholar]
  • Spurny, F., I. Votockova, and J. Bottollier-Depois. Geographical influence on the radiation exposure of an aircrew on board a subsonic aircraft. Radioprotection, 31 (2), 275–280, 1996. [Google Scholar]
  • Spurny, F., T. Dachev, and K. Kudela. Increase of onboard aircraft exposure level during a solar flare. Nuclear Energy Safety, 10 (48), 396–400, 2002. [Google Scholar]
  • Tsyganenko, N. A magnetospheric magnetic field model with a warped tail current sheet. Planet. Space Sci., 37 (1), 5–20, 1989. [NASA ADS] [CrossRef] [Google Scholar]
  • Tsyganenko, N., and M. Sitnov. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J. Geophys. Res. [Space Phys.], 110 (A3), 2005, DOI: 10.1029/2004JA010798. [CrossRef] [Google Scholar]
  • Usoskin, I., K. Alanko-Huotari, G. Kovaltsov, and K. Mursula. Heliospheric modulation of cosmic rays: monthly reconstruction for 1951–2004. J. Geophys. Res., 110 (A12108), 2005, DOI: 10.1029/2005JA01125. [Google Scholar]
  • Usoskin, I., G. Bazilevskaya, and G.A. Kovaltsov. Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. J. Geophys. Res., 116 (A02), 104, 2011, DOI: 10.1029/2010JA016105. [Google Scholar]
  • Usoskin, I., and G. Kovaltsov. Cosmic ray induced ionization in the atmosphere: full modeling and practical applications. J. Geophys. Res., 111 (D21206), 2006, DOI: 10.1029/2006JD007150. [Google Scholar]
  • Usoskin, I.G., L. Desorgher, P. Velinov, M. Storini, E. Flückiger, R. Bütikofer, and G. Kovaltsov. Ionization of the Earth’s atmosphere by solar and galactic cosmic rays. Acta Geophys., 57 (1), 88–101, 2009, DOI: 10.2478/s11600-008-0019-9. [NASA ADS] [CrossRef] [Google Scholar]
  • Vainio, R., L. Desorgher, D. Heynderickx, M. Storini, E. Flückiger, et al. Dynamics of the Earth’s particle radiation environment. Space Sci. Rev., 147 (3–4), 187–231, 2009, DOI: 10.1007/s11214-009-9496-7. [NASA ADS] [CrossRef] [Google Scholar]
  • Vashenyuk, E., Y. Balabin, B. Gvozdevsky, and L. Schur. Characteristics of relativistic solar cosmic rays during the event of December 13, 2006. Geomag. Aeron., 48 (2), 149–153, 2008, DOI: 10.1007/s11478-008-2003-6. [CrossRef] [Google Scholar]
  • Vashenyuk, E., Y. Balabin, J. Perez-Peraza, A. Gallegos-Cruz, and L. Miroshnichenko. Some features of the sources of relativistic particles at the Sun in the solar cycles 21–23. Adv. Space Res., 38 (3), 411–417, 2006, DOI: 10.1016/j.asr.2005.05.012. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Waters, L., G. McKinney, J. Durkee, M. Fensin, J. Hendricks, M. James, R. Johns, and D. Pelowitz. The MCNPX Monte Carlo radiation transport code. AIP Conference Proceedings, 896 (1), 81–90, 2007, DOI: 10.1063/1.2720459. [CrossRef] [Google Scholar]
  • Wolf, G., G. Obe, and L. Bergau. Cytogenetic investigations in flight personnel. Radiat. Prot. Dosim., 86 (4), 275–278, 1999. [CrossRef] [Google Scholar]
  • Yong, L., A. Sigurdson, E. Ward, M. Waters, E. Whelan, M. Petersen, P. Bhatti, M. Ramsey, E. Ron, and J. Tucker. Increased frequency of chromosome translocations in airline pilots with long-term flying experience. Occupational and Environmental Medicine, 66 (1), 56–62, 2009, DOI: 10.1136/oem.2008.038901. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.