Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Space Weather research in the Digital Age and across the full data lifecycle
|
|
---|---|---|
Article Number | 8 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2020009 | |
Published online | 09 March 2020 |
Research Article
Quantifying the latitudinal representivity of in situ solar wind observations
1
Department of Meteorology, University of Reading, Earley Gate, PO Box 243, RG6 6BB Reading, UK
2
Predictive Science Inc., 9990 Mesa Rim Rd, Suite 170, San Diego, 92121 CA, USA
3
Department of Mathematics and Statistics, University of Reading, Whiteknights, PO Box 220, RG6 6AX Reading, UK
* Corresponding author: m.j.owens@reading.ac.uk
Received:
18
September
2019
Accepted:
18
February
2020
Advanced space-weather forecasting relies on the ability to accurately predict near-Earth solar wind conditions. For this purpose, physics-based, global numerical models of the solar wind are initialized with photospheric magnetic field and coronagraph observations, but no further observation constraints are imposed between the upper corona and Earth orbit. Data assimilation (DA) of the available in situ solar wind observations into the models could potentially provide additional constraints, improving solar wind reconstructions, and forecasts. However, in order to effectively combine the model and observations, it is necessary to quantify the error introduced by assuming point measurements are representative of the model state. In particular, the range of heliographic latitudes over which in situ solar wind speed measurements are representative is of primary importance, but particularly difficult to assess from observations alone. In this study we use 40+ years of observation-driven solar wind model results to assess two related properties: the latitudinal representivity error introduced by assuming the solar wind speed measured at a given latitude is the same as that at the heliographic equator, and the range of latitudes over which a solar wind measurement should influence the model state, referred to as the observational localisation. These values are quantified for future use in solar wind DA schemes as a function of solar cycle phase, measurement latitude, and error tolerance. In general, we find that in situ solar wind speed measurements near the ecliptic plane at solar minimum are extremely localised, being similar over only 1° or 2° of latitude. In the uniform polar fast wind above approximately 40° latitude at solar minimum, the latitudinal representivity error drops. At solar maximum, the increased variability of the solar wind speed at high latitudes means that the latitudinal representivity error increases at the poles, though becomes greater in the ecliptic, as long as moderate speed errors can be tolerated. The heliospheric magnetic field and solar wind density and temperature show very similar behaviour.
Key words: Solar wind / space weather forecasting / data assimilation
© M.J. Owens et al. Published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.