Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Space Weather research in the Digital Age and across the full data lifecycle
|
|
---|---|---|
Article Number | 8 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2020009 | |
Published online | 09 March 2020 |
- Arge CN, Odstrcil D, Pizzo VJ, Mayer LR. 2003. Improved method for specifying solar wind speed near the sun. AIP Conf Proc 679(1): 190–193. https://doi.org/10.1063/1.1618574. [Google Scholar]
- Asch M, Bocquet M, Nodet M. 2016. Data assimilation: Methods, algorithms, and applications, Vol. 11 of Fundamentals of Algorithms, SIAM, Philadelphia. [CrossRef] [Google Scholar]
- Aseev N, Shprits Y. 2019. Reanalysis of ring current electron phase space sensities using Van Allen Probe observations, convection model, and lognormal Kalman filter. Space Weather 17(4): 619–638. https://doi.org/10.1029/2018SW002110. [CrossRef] [Google Scholar]
- Barnard L, Owens M, Scott C, Jones S. 2019. Extracting inner-heliosphere solar wind speed information from heliospheric imager observations. Space Weather 17(6): 925–938. https://doi.org/10.1029/2019SW002226. [CrossRef] [Google Scholar]
- Box GEP. 1976. Science and statistics. J Am Stat Assoc 71(356): 791–799. https://doi.org/10.1080/01621459.1976.10480949. [CrossRef] [Google Scholar]
- Bust GS, Mitchell CN. 2008. History, current state, and future directions of ionospheric imaging. Rev Geophys 46(1): RG1003. https://doi.org/10.1029/2006RG000212. [Google Scholar]
- Elvidge S, Angling MJ. 2019. Using the local ensemble transform Kalman filter for upper atmospheric modelling. J Space Weather Space Clim 9: A30. https://doi.org/10.1051/swsc/2019018. [CrossRef] [Google Scholar]
- Ghil M, Malanotte-Rizzoli P. 1991. Data assimilation in meteorology and oceanography. Adv Geophys 33: 141–266. https://doi.org/10.1016/S0065-2687(08)60442-2. [CrossRef] [Google Scholar]
- Glauert SA, Horne RB, Meredith NP. 2018. A 30-year simulation of the outer electron radiation belt. Space Weather 16(10): 1498–1522. https://doi.org10.1029/2018SW001981. [CrossRef] [Google Scholar]
- Hickmann KS, Godinez HC, Henney CJ, Arge CN. 2015. Data assimilation in the ADAPT photospheric flux transport model. Sol Phys 290(4): 1105–1118. https://doi.org/10.1007/s11207-015-0666-3. [Google Scholar]
- Janji T, Bormann N, Bocquet M, Carton JA, Cohn SE, et al. 2018. On the representation error in data assimilation. Quart J Roy Meteor Soc 144(713): 1257–1278. https://doi.org/10.1002/qj.3130. [CrossRef] [Google Scholar]
- Jian LK, Russell CT, Luhmann JG, MacNeice PJ, Odstrcil D, Riley P, Linker JA, Skoug RM, Steinberg JT. 2011. Comparison of observations at ACE and Ulysses with Enlil model results: Stream interaction regions during Carrington rotations 2016–2018. Sol Phys 273(1): 179–203. https://doi.org/10.1007/s11207-011-9858-7. [CrossRef] [Google Scholar]
- Jian LK, MacNeice PJ, Taktakishvili A, Odstrcil D, Jackson B, Yu H-S, Riley P, Sokolov IV, Evans RM. 2015. Validation for solar wind prediction at Earth: Comparison of coronal and heliospheric models installed at the CCMC. Space Weather 13(5): 316–338. https://doi.org/10.1002/2015SW001174. [CrossRef] [Google Scholar]
- Jian LK, MacNeice PJ, Mays ML, Taktakishvili A, Odstrcil D, Jackson B, Yu H-S, Riley P, Sokolov IV. 2016. Validation for global solar wind prediction using Ulysses comparison: Multiple coronal and heliospheric models installed at the Community Coordinated Modeling Center. Space Weather 14(8): 592–611. https://doi.org/10.1002/2016SW001435. [CrossRef] [Google Scholar]
- Kahler SW, Arge CN, Smith DA. 2016. Using the WSA model to test the Parker spiral approximation for SEP event magnetic connections. Sol Phys 291(6): 1829–1852. https://doi.org/10.1007/s11207-016-0934-x. [CrossRef] [Google Scholar]
- Kalnay E. 2002. Atmospheric modeling, data assimilation and predictability. Cambridge University Press, Cambridge. [CrossRef] [Google Scholar]
- Lang M, Owens MJ. 2019. A variational approach to data assimilation in the solar wind. Space Weather 17(1): 59–83. https://doi.org/10.1029/2018SW001857. [CrossRef] [Google Scholar]
- Lang M, Browne P, van Leeuwen PJ, Owens M. 2017. Data assimilation in the solar wind: Challenges and first results. Space Weather 15(11): 1490–1510. https://doi.org/10.1002/2017SW001681. [CrossRef] [Google Scholar]
- Linker J, Mikic Z, Biesecker DA, Forsyth RJ, Gibson WE, Lazarus AJ, Lecinski A, Riley P, Szabo A, Thompson BJ. 1999. Magnetohydrodynamic modeling of the solar corona during whole sun month. J Geophys Res 104: 9809–9830. https://doi.org/10.1029/1998JA900159. [NASA ADS] [CrossRef] [Google Scholar]
- MacNeice P, Jian LK, Antiochos SK, Arge CN, Bussy-Virat CD, et al. 2018. Assessing the quality of models of the ambient solar wind. Space Weather 16(11): 1644–1667. https://doi.org/10.1029/2018SW002040. [CrossRef] [Google Scholar]
- Manoharan PK. 2012. Three-dimensional evolution of solar wind during solar cycles 22–24. Astrophys J 751(2): 128–141. https://doi.org/10.1088/0004-637X/751/2/128. [Google Scholar]
- Mays ML, Taktakishvili A, Pulkkinen A, MacNeice PJ, Rastätter L, et al. 2015. Ensemble modeling of CMEs using the WSAENLIL + Cone model. Sol Phys 290(6): 1775–1814. https://doi.org/10.1007/s11207-015-0692-1. [NASA ADS] [CrossRef] [Google Scholar]
- McComas DJ, Elliott HA, Schwadron NA, Gosling JT, Skoug RM, Goldstein BE. 2003. The three-dimensional solar wind around solar maximum. Geophys Res Lett 30(10): 1517. https://doi.org/10.1029/2003GL017136. [NASA ADS] [CrossRef] [Google Scholar]
- McGregor SL, Hughes WJ, Arge CN, Owens MJ, Odstrcil D. 2011. The distribution of solar wind speeds during solar minimum: Calibration for numerical solar wind modeling constraints on the source of the slow solar wind. J Geophys Res 116(A3): 1–11. https://doi.org/10.1029/2010JA015881. [Google Scholar]
- Odstrcil D. 2003. Modeling 3-D solar wind structures. Adv Space Res 32: 497–506. https://doi.org/10.1016/S0273-1177(03)00332-6. [NASA ADS] [CrossRef] [Google Scholar]
- Owens MJ, Arge CN, Spence HE, Pembroke A. 2005. An event-based approach to validating solar wind speed predictions: High-speed enhancements in the Wang-Sheeley-Arge model. J Geophys Res 110(A12): 1–10. https://doi.org/10.1029/2005JA011343. [Google Scholar]
- Owens MJ, Spence HE, McGregor S, Hughes WJ, Quinn JM, Arge CN, Riley P, Linker J, Odstrcil D. 2008. Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations. Space Weather 6(8): S08,001. https://doi.org/10.1029/2007SW000380. [Google Scholar]
- Owens MJ, Lockwood M, Barnard L, Davis CJ. 2011. Solar cycle 24: Implications for energetic particles and long-term space climate change. Geophys Res Lett 38(19): 1–5. https://doi.org/10.1029/2011GL049328. [CrossRef] [Google Scholar]
- Owens MJ, Lockwood M, Riley P. 2017. Global solar wind variations over the last four centuries. Sci Rep 7(41): 548. https://doi.org/10.1038/srep41548. [CrossRef] [Google Scholar]
- Owens M, Riley P, Lang M, Lockwood M. 2019a. Near-earth solar wind forecasting using corotation from L5: The error introduced by heliographic latitude offset. Space Weather 17(7): 1105–1113. [Google Scholar]
- Owens MJ, Lang M, Riley P, Stansby D. 2019b. Towards construction of a solar wind reanalysis dataset: Application to the first perihelion pass of Parker Solar Probe. Sol Phys 294(6): 83. https://doi.org/10.1007/s11207-019-1479-6. [CrossRef] [Google Scholar]
- Pomoell J, Poedts S. 2018. EUHFORIA: European heliospheric forecasting information asset. J Space Weather Space Clim 8: A35. https://doi.org/10.1051/swsc/2018020. [CrossRef] [Google Scholar]
- Rabier F. 2005. Overview of global data assimilation developments in numerical weather-prediction centres. Quart J Roy Meteor Soc 131(613): 3215–3233. https://doi.org/10.1256/qj.05.129. [CrossRef] [Google Scholar]
- Riley P, Linker JA, Mikic Z. 2001. An empirically-driven global MHD model of the solar corona and inner heliosphere. J Geophys Res 106: 15889–15902. https://doi.org/10.1029/2000JA000121. [Google Scholar]
- Riley P, Luhmann J, Opitz A, Linker JA, Mikic Z. 2010. Interpretation of the cross-correlation function of ACE and STEREO solar wind velocities using a global MHD Model. J Geophys Res Space Phys 115(A11): 104. https://doi.org/10.1029/2010JA015717. [Google Scholar]
- Riley P, Linker JA, Lionello R, Mikic Z. 2012. Corotating interaction regions during the recent solar minimum: The power and limitations of global MHD modeling. J Atmos Sol-Terr Phys 83: 1–10. https://doi.org/10.1016/j.jastp.2011.12.013. [CrossRef] [Google Scholar]
- Riley P, Linker JA, Arge CN. 2015. On the role played by magnetic expansion factor in the prediction of solar wind speed. Space Weather 13(3): 154–169. https://doi.org/10.1002/2014SW001144. [NASA ADS] [CrossRef] [Google Scholar]
- Sasaki Y. 1970. Numerical variation analysis formulated under the constraints as determined by longwave equations and a low-pass filter. Mon Weather Rev 98(12): 884–898. https://doi.org/10.1175/1520-0493(1970). [CrossRef] [Google Scholar]
- Stevens ML, Linker JA, Riley P, Hughes WJ. 2012. Underestimates of magnetic flux in coupled MHD model solar wind solutions. J Atmos Sol-Terr Phys 83: 22–31. https://doi.org/10.1016/j.jastp.2012.02.005. [NASA ADS] [CrossRef] [Google Scholar]
- Temmer M, Hinterreiter J, Reiss MA. 2018. Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model. J Space Weather Space Clim 8: A18. https://doi.org/10.1051/swsc/2018007. [CrossRef] [Google Scholar]
- Thomas SR, Owens MJ, Lockwood M. 2013. The 22-year hale cycle in cosmic ray flux – evidence for direct heliospheric modulation. Sol Phys 289(1): 407–421. https://doi.org/10.1007/s11207-013-0341-5. [CrossRef] [Google Scholar]
- Toth G, Sokolov IV, Gombosi TI, Chesney DR, Clauer CR, et al. 2005. Space weather modeling framework: A new tool for the space science community. J Geophys Res 110(A12): 226. https://doi.org/10.1029/2005JA011126. [Google Scholar]
- Waller JA, Dance SL, Lawless AS, Nichols NK, Eyre JR. 2014. Representativity error for temperature and humidity using the Met Office high-resolution model. Quart J Roy Meteor Soc 140(681): 1189–1197. https://doi.org/10.1002/qj.2207. [CrossRef] [Google Scholar]
- Wenzel KP, Marsden RG, Page DE, Smith EJ. 1992. The ULYSSES mission. A&A Suppl 92(2): 207–219. [Google Scholar]
- Zhao X-P, Plunkett SP, Liu W. 2002. Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model. J Geophys Res 107(A8): SSH-13. https://doi.org/10.1029/2001JA009143. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.