Space Climate
Open Access
Issue
J. Space Weather Space Clim.
Volume 2, 2012
Space Climate
Article Number A02
Number of page(s) 10
DOI https://doi.org/10.1051/swsc/2012003
Published online 17 May 2012
  • Barnden, L.R., Forbush decreases 1966–1972; Their solar and interplanetary associations and their anisotropies, Proc. 13th Int. Cosmic Ray Conf., 2, 1271, 1973a. [Google Scholar]
  • Barnden, L.R., Forbush decreases 1966–1972; The large-scale magnetic field configuration associated with Forbush decreases, Proc. 13th Int. Cosmic Ray Conf., 2, 1277, 1973b. [Google Scholar]
  • Belcher, J.W., and L. Davis, Large amplitude Alfvén waves in the interplanetary medium, 2, J. Geophys. Res., 76, 3534, 1971. [NASA ADS] [CrossRef] [Google Scholar]
  • Burlaga, L.F., and R.P. Lepping, The causes of recurrent geomagnetic storms, Planet. Space Sci., 25, 1151, 1977. [NASA ADS] [CrossRef] [Google Scholar]
  • Burlaga, L.F., E. Sittler, F. Mariani, and R. Schwenn, Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP 8 observations, J. Geophys. Res., 86, 6673, 1981. [NASA ADS] [CrossRef] [Google Scholar]
  • Cane, H.V., Cosmic ray decreases and magnetic clouds, J. Geophys. Res, 98, 3509, 1993. [NASA ADS] [CrossRef] [Google Scholar]
  • Cane, H.V., Coronal mass ejections and Forbush decreases, Space Sci. Rev., 93, 55, 2000. [NASA ADS] [CrossRef] [Google Scholar]
  • Cane, H.V., and D. Lario, An introduction to CMEs and energetic particles, Space Sci. Rev., 123, 45, 2006. [CrossRef] [Google Scholar]
  • Cane, H.V., and I.G. Richardson, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002, J. Geophys. Res., 108, 1156, DOI: 10.1029/2002JA009817, 2003. [NASA ADS] [CrossRef] [Google Scholar]
  • Cane, H.V., I.G. Richardson, and T.T. von Rosenvinge, Cosmic ray decreases and particle acceleration in 1978–1982 and the associated solar wind structures, J. Geophys. Res., 98, 13295, 1993. [CrossRef] [Google Scholar]
  • Cane, H.V., I.G. Richardson, and T.T. von Rosenvinge, Cosmic ray decreases: 1964–1994, J. Geophys. Res., 101, 21561, 1996. [NASA ADS] [CrossRef] [Google Scholar]
  • Cane, H.V., R.A. Mewaldt, C.M.S. Cohen, and T.T. von Rosenvinge, Role of flares and shocks in determining solar energetic particle abundances, J. Geophys. Res., 111, A06S90, DOI: 10.1029/2005JA011071, 2006. [CrossRef] [Google Scholar]
  • Chao, J.K., and R.P. Lepping, A Correlative study of SSC’s, interplanetary shocks, and solar activity, J. Geophys. Res., 79, 1799, 1974. [CrossRef] [Google Scholar]
  • Connick, D.E., C.W. Smith, and N.A. Schwadron, Interplanetary magnetic flux depletion during protracted solar minima, Astrophys. J., 727, 8, DOI: 10.1088/0004-637X/727/1/8, 2011. [CrossRef] [Google Scholar]
  • Crooker, N.U., and K.I. Gringauz, On the low correlations between long-term averages of solar wind speed and geomagnetic activity after 1976, J. Geophys. Res., 98, 59, 1993. [CrossRef] [Google Scholar]
  • Crooker, N.U., J. Feynman, and J.T. Gosling, On the high correlation between long-term averages of solar wind speed and geomagnetic activity, J. Geophys. Res., 82, 1933, 1977. [NASA ADS] [CrossRef] [Google Scholar]
  • Dungey, J.W., Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47, 1961. [NASA ADS] [CrossRef] [Google Scholar]
  • Echer, E., W.D. Gonzalez, B.T. Tsurutani, and A.L.C. Gonzalez, Interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT) during solar cycle 23 (1996–2006), J. Geophys. Res., 113, A05221, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Emery, B.A., I.G. Richardson, D.S. Evans, and F.J. Rich, Solar wind structure sources and periodicities of auroral electron power over three solar cycles, J. Atmosph. Solar-Terr. Phys., 71, 1157, DOI: 10.1016/j.jastp.2008.08.005, 2009. [CrossRef] [Google Scholar]
  • Emery, B.A., I.G. Richardson, D.S. Evans, F.J. Rich, and G.R. Wilson, Solar rotational periodicities and the semiannual variation in the solar wind, radiation belt, and aurora, Solar Phys., 274, 399, DOI: 10.1007/s11207-011-9758-x, 2011. [CrossRef] [Google Scholar]
  • Feminella, F., and M. Storini, Large scale dynamical phenomena during solar activity cycles, A&A, 322, 311, 1997. [Google Scholar]
  • Feldman, W.C., J.R. Asbridge, S.J. Bame, E.E. Fenimore, and J.T. Gosling, Origin of solar wind interstream flows: Near Equitorial coronal streamers, J. Geophys. Res., 86, 5408, 1981. [CrossRef] [Google Scholar]
  • Forbush, S.E., On the effects in the cosmic ray intensity observed during the recent magnetic storm, Phys. Rev., 51, 1108, 1937. [NASA ADS] [CrossRef] [Google Scholar]
  • Gnevyshev, M.N., On the 11-years cycle of solar activity, Sol. Phys., 1, 107, 1967. [NASA ADS] [CrossRef] [Google Scholar]
  • Gnevyshev, M.N., Essential features of the 11 year solar cycle, Sol. Phys., 51, 175, 1977. [NASA ADS] [CrossRef] [Google Scholar]
  • Gold, T., Discussion of shock waves and rarefied gases, in Gas Dynamics of Cosmic Clouds, North-Holland Publishing Co, Amsterdam, 193, 1955. [Google Scholar]
  • Gosling, J.T., J.R. Asbridge, S.J. Bame, A.H. Hundhausen, and I.B. Strong, Discontinuities in the solar wind associated with sudden geomagnetic impulses and sudden commencements, J. Geophys. Res., 72, 3357, 1967. [CrossRef] [Google Scholar]
  • Gosling, J.T., D.J McComas, J.L. Phillips, and S.J. Bame, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections, 96, 7831, 1991. [Google Scholar]
  • Hedgecock, P.C., Measurements of the interplanetary magnetic field in relation to the modulation of cosmic rays, Solar Phys., 42, 497, 1975. [CrossRef] [Google Scholar]
  • Huttunen, K., and H. Koskinen, Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity, Ann. Geophys., 22, 1729, 2004. [CrossRef] [Google Scholar]
  • Iucci, N., M. Parisi, M. Storini, and G. Villoresi, High speed solar wind streams and galactic cosmic ray modulation, Nuovo Cimento, 2C, 421, 1979. [Google Scholar]
  • Ji, E.-Y., Y.-J. Moon, and K.-H. Kim, Statistical comparison of interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT), J. Geophys. Res., 115, A10232, DOI: 10.1029/2009JA015112, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Kane, R.P., Which one is the “Gnevyshev” gap? Solar Phys., 229, 387, 2005. [CrossRef] [Google Scholar]
  • King, J.H., and N.E. Papitashvili, Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and field data, J. Geophys. Res., 110, 2104, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Klecker, B., H. Kunow, H.V. Cane, S. Dalla, B. Heber, et al., Energetic particle observations, Space Sci. Rev., 123, 217, 2006. [CrossRef] [Google Scholar]
  • Klein, L.W., and L.F. Burlaga, Interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 87, 613, 1982. [NASA ADS] [CrossRef] [Google Scholar]
  • Krieger, A.S., A.F. Timothy, and E.C. Roelof, A coronal hole and its identification as the source of a high velocity solar wind stream, Sol. Phys., 29, 505, 1973. [NASA ADS] [CrossRef] [Google Scholar]
  • Love, J.J., Long-term biases in geomagnetic K and αα indices, Ann. Geophys, 29, 1365, 2011. [CrossRef] [Google Scholar]
  • Mayaud, P.N., The αα indices: A 100-year series characterising the geomagnetic activity, J. Geophys. Res., 77, 6870, 1972. [NASA ADS] [CrossRef] [Google Scholar]
  • Menvielle, M., and A. Berthelier, The K-derived planetary indices: Description and availability, Rev. Geophys., 29, 415, DOI: 10.1029/91RG00994, 1991. [CrossRef] [Google Scholar]
  • Norton, A.A., and J.C. Gallagher, Solar-cycle characteristics examined in separate hemispheres: Phase, Gnevyshev gap, and length of minimum, Solar Phys., 261, 193, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • O’Brien, T.P., and R.L. McPherron, An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay, J. Geophys. Res., 105, 7707, 2000. [CrossRef] [Google Scholar]
  • Owens, M.J., and N.U. Crooker, Coronal mass ejections and magnetic flux buildup in the heliosphere, J. Geophys. Res., 111, A10104, DOI: 10.1029/2006JA011641, 2006. [CrossRef] [Google Scholar]
  • Owens, M.J., N.U. Crooker, N.A. Schwadron, T.S. Horbury, S. Yashiro, et al., Conservation of open solar magnetic flux and the floor in the heliospheric magnetic field, Geophys. Res. Lett., 35, L20108, DOI: 10.1029/2008GL035813, 2008. [CrossRef] [Google Scholar]
  • Richardson, I.G., Energetic particles and corotating interaction regions in the solar wind, Space Sci. Rev., 111, 267, 2004. [NASA ADS] [CrossRef] [Google Scholar]
  • Richardson, I.G., The formation of CIRs at stream-stream interfaces and resultant geomagnetic activity, in Recurrent Magnetic Storms: Corotating Solar Wind Streams, ed. B.T., Tsurutani, et al., A.G.U. Geophysical Monograph, 167, 45, 2006. [CrossRef] [Google Scholar]
  • Richardson, I.G., and H.V. Cane, Signatures of shock drivers in the solar wind and their dependence on the solar source location, J. Geophys. Res., 98, 15295, 1993. [CrossRef] [Google Scholar]
  • Richardson, I.G., and H.V. Cane, Regions of abnormally low proton temperature in the solar wind (1965–1991) and their association with ejecta, J. Geophys. Res., 100, 23397, 1995. [NASA ADS] [CrossRef] [Google Scholar]
  • Richardson, I.G., and H.V. Cane, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): Catalog and summary of properties, Solar Phys., 264, 189, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Richardson, I.G., and H.V. Cane, Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during 1995–2009 and implications for storm forecasting, Space Weather, 9, S07005, DOI: 10.1029/2011SW000670, 2011a. [NASA ADS] [CrossRef] [Google Scholar]
  • Richardson, I.G., and H.V. Cane, Galactic Cosmic Ray Intensity Response to Interplanetary Coronal Mass Ejections/Magnetic Clouds in 1995–2009, Solar Phys, 270, 609, DOI: 10.1007/s11207-011-9774-x, 2011b. [NASA ADS] [CrossRef] [Google Scholar]
  • Richardson, I.G., G. Wibberenz, and H.V. Cane, The relationship between recurring cosmic ray depressions and corotating solar wind streams at ≤1 AU: IMP 8 and Helios 1 and 2 anticoincidence guard rate observations, J. Geophys. Res., 101, 13483, 1996. [NASA ADS] [CrossRef] [Google Scholar]
  • Richardson, I.G., C.J. Farrugia, and H.V. Cane, A statistical study of the behavior of the electron temperature in ejecta, J. Geophys. Res., 102, 4691, 1997. [CrossRef] [Google Scholar]
  • Richardson, I.G., H.V. Cane, and G. Wibberenz, A 22-year dependence in the size of near-ecliptic corotating cosmic ray depressions during five solar minima, J. Geophys. Res., 104, 12549, 1999. [NASA ADS] [CrossRef] [Google Scholar]
  • Richardson, I.G., E.W. Cliver, and H.V. Cane, Sources of geomagnetic activity over the solar cycle: Relative importance of CMEs, high-speed streams, and slow solar wind, J. Geophys. Res., 105, 18203, 2000. [CrossRef] [Google Scholar]
  • Richardson, I.G., E.W. Cliver, and H.V. Cane, Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000, Geophys. Res. Lett., 28, 2569, 2001. [NASA ADS] [CrossRef] [Google Scholar]
  • Richardson, I.G., H.V. Cane, and E.W. Cliver, Sources of geomagnetic activity during nearly three solar cycles (1972–2000), J. Geophys. Res., 107, DOI: 10.1029/2001JA000504, 2002. [Google Scholar]
  • Richardson, I.G., D.F. Webb, J. Zhang, D.B. Berdichevsky, D.A. Biesecker, et al., Major geomagnetic storms (Dst ≤ −100 nT) generated by corotating interaction regions, J. Geophys. Res., 111, A07S09, DOI: 10.1029/2005JA011476, 2006. [CrossRef] [Google Scholar]
  • Riley, P., C. Schatzman, H.V. Cane, I.G. Richardson, and N. Gopalswamy, On the rates of coronal mass ejections: Remote solar and in situ observations, Astrophys. J., 647, 648, 2006. [CrossRef] [Google Scholar]
  • Robbrecht, E., D. Berghmans, and R.A.M. Van der Linden, Automated LASCO CME catalog for solar cycle 23: Are CMEs scale invariant? Astrophys. J, 691, 1222, DOI: 10.1088/0004-637X/691/2/1222, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Russell, C.T., J.G. Luhmann, and L.K. Jian, How unprecedented a solar minimum? Rev. Geophys., 48, RG2004, DOI: 10.1029/2009RG000316, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Sanderson, T.R., J. Beeck, R.G. Marsden, C. Tranquille, K.-P. Wenzel, R.B. McKibben, and E.J. Smith, A study of the relation between magnetic clouds and Forbush decreases, Proc. 21st Int. Cosmic Ray Conf., 6, 251, 1990. [Google Scholar]
  • Scherrer, P.H., J.M. Wilcox, L. Svalgaard, T.L. Duvall Jr., P.H. Dittmer, and E.K. Gustafson, The mean magnetic field of the Sun: Observations at Stanford, Solar Phys., 54, 353, 1977. [NASA ADS] [CrossRef] [Google Scholar]
  • Sheeley, Jr., N.R., J.W. Harvey, and W.C. Feldman, Coronal holes, solar wind streams, and recurrent geomagnetic disturbances, 1973–1976, Solar Phys., 49, 271, 1976. [NASA ADS] [CrossRef] [Google Scholar]
  • Sheeley, Jr., N.R., J.S. Asbridge, S.J. Bame, and J.W. Harvey, A pictorial comparison of interplanetary magnetic field polarity, solar wind speed, and geomagnetic disturbance index during the sunspot cycle, Solar Phys., 52, 485, 1977. [CrossRef] [Google Scholar]
  • Simpson, J.A., A brief history of recurrent solar modulation of the galactic cosmic-rays, Space Sci. Rev., 83, 169, 1998. [CrossRef] [Google Scholar]
  • Simpson, J.A., H.W. Babcock, and H.D. Babcock, Association of a “unipolar” magnetic region on the Sun with changes of primary cosmic-ray intensity, Phys. Rev., 98, 1402, 1955. [CrossRef] [Google Scholar]
  • Smith, E.J., and A. Balogh, Decrease in heliospheric magnetic flux in this solar minimum: Recent Ulysses magnetic field observations, Geophys. Res. Lett., 35, L22103, DOI: 10.1029/2008GL035345, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Sugiura, M., Hourly values of equatorial Dst for the IGY, Ann. Int. Geophys. Year, 35, 9, 1964. [Google Scholar]
  • Tsurutani, B.T., and W.D. Gonzalez, The cause of high intensity long-duration continuous AE activity (HILDCAAs); Interplanetary Alfvén wave trains, Planet. Space Sci., 35, 405, 1987. [NASA ADS] [CrossRef] [Google Scholar]
  • Tsurutani, B.T., E.J. Smith, W.D. Gonzalez, and F. Tang, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979), 93, 8519, 1988. [Google Scholar]
  • Tsurutani, B.T., and W.D. Gonzalez, The interplanetary causes of magnetic storms: A review, in Magnetic Storms, ed. B.T., Tsurutani, W.D. Gonzalez, Y. Kamide, and J.K. Arballo, A.G.U. Geophys. Monogr. Ser., Vol. 98, AGU, Washington, DC, 77, 1997. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., R.L. McPherron, W.D. Gonzalez, G. Lu, N. Gopalswamy, and F.L. Guarnieri, Magnetic storms caused by corotating solar wind streams, in Recurrent Magnetic Storms: Corotating Solar Wind Streams, ed. B.T., Tsurutani, R.L. McPherron, W.D. Gonzalez, G. Lu, J.H.A. Sobral, and N. Gopalswamy, A.G.U. Geophysical Monograph, 167, 1, 2006. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., E. Echer, and W.D. Gonzalez, The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields, Ann. Geophys., 29, 839, DOI: 10.5194/angeo-29-839-2011, 2011. [CrossRef] [Google Scholar]
  • Turner, N.E., W.D. Cramer, S.K. Earles, and B.A. Emery, Geoefficiency and energy partitioning in CIR-driven and CME-driven storms, J. Atmosph. Solar-Terr. Phys., 71, 1023, 2009. [CrossRef] [Google Scholar]
  • Van Hollebeke, M.A., J.R. Wang, and F.B. McDonald, A catalogue of solar cosmic ray events IMPs IV and V (May 1967–Dec. 1972), NASA Goddard Space Flight Center, X-661-74-27, 1974. [Google Scholar]
  • Wang, C., C.X. Li, Z.H. Huang, and J.D. Richardson, Effect of interplanetary shock strengths and orientations on storm sudden commencement rise times, Geophys. Res. Lett., 33, L14104, DOI: 10.1029/2006GL025966, 2006. [CrossRef] [Google Scholar]
  • Webb, D.F., and R.A. Howard, The solar cycle variation of coronal mass ejections and the solar wind mass flux, J. Geophys. Res., 99, 4201, 1994. [NASA ADS] [CrossRef] [Google Scholar]
  • Wilson, R.M., Geomagnetic response to magnetic clouds, Planet. Space Sci., 35, 329, 1987. [CrossRef] [Google Scholar]
  • Wilson, R.M., On the behavior of the Dst geomagnetic index in the vicinity of magnetic cloud passage at Earth, J. Geophys. Res., 95, 215, 1988. [CrossRef] [Google Scholar]
  • Yashiro, S., N. Gopalswamy, G. Michalek, O.C. St. Cyr, S.-P. Plunkett, N.B. Rich, and R.A. Howard, A catalog of white light coronal mass ejections observed by the SOHO spacecraft, J. Geophys. Res., 109, A07105, 2004. [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang, J., I.G. Richardson, D.F. Webb, N. Gopalswamy, E. Huttunen, et al., Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005, J. Geophys. Res., 112, A12105, DOI: 10.1029/2007JA012332, 2007. [CrossRef] [Google Scholar]
  • Zhao, L., T.H. Zurbuchen, and L.A. Fisk, Global distribution of the solar wind during solar cycle 23: ACE observations, Geophys. Res. Lett., 36, 14104, DOI: 10.1029/2009GL039181, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Zirker, J.B., (ed.), Coronal Holes and High Speed Wind Streams, Skylab Solar Workshop, Colorado University Press, Boulder, CO, 1977. [Google Scholar]
  • Zurbuchen, T.H., and I.G. Richardson, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections, Space Sci. Rev., 123, 31–34, 2006. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.