Space Climate
Open Access
Issue
J. Space Weather Space Clim.
Volume 2, 2012
Space Climate
Article Number A02
Number of page(s) 10
DOI https://doi.org/10.1051/swsc/2012003
Published online 17 May 2012
  • Barnden, L.R., Forbush decreases 1966–1972; Their solar and interplanetary associations and their anisotropies, Proc. 13th Int. Cosmic Ray Conf., 2, 1271, 1973a.
  • Barnden, L.R., Forbush decreases 1966–1972; The large-scale magnetic field configuration associated with Forbush decreases, Proc. 13th Int. Cosmic Ray Conf., 2, 1277, 1973b.
  • Belcher, J.W., and L. Davis, Large amplitude Alfvén waves in the interplanetary medium, 2, J. Geophys. Res., 76, 3534, 1971. [NASA ADS] [CrossRef]
  • Burlaga, L.F., and R.P. Lepping, The causes of recurrent geomagnetic storms, Planet. Space Sci., 25, 1151, 1977. [NASA ADS] [CrossRef]
  • Burlaga, L.F., E. Sittler, F. Mariani, and R. Schwenn, Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP 8 observations, J. Geophys. Res., 86, 6673, 1981. [NASA ADS] [CrossRef]
  • Cane, H.V., Cosmic ray decreases and magnetic clouds, J. Geophys. Res, 98, 3509, 1993. [NASA ADS] [CrossRef]
  • Cane, H.V., Coronal mass ejections and Forbush decreases, Space Sci. Rev., 93, 55, 2000. [NASA ADS] [CrossRef]
  • Cane, H.V., and D. Lario, An introduction to CMEs and energetic particles, Space Sci. Rev., 123, 45, 2006. [CrossRef]
  • Cane, H.V., and I.G. Richardson, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002, J. Geophys. Res., 108, 1156, DOI: 10.1029/2002JA009817, 2003. [NASA ADS] [CrossRef]
  • Cane, H.V., I.G. Richardson, and T.T. von Rosenvinge, Cosmic ray decreases and particle acceleration in 1978–1982 and the associated solar wind structures, J. Geophys. Res., 98, 13295, 1993. [CrossRef]
  • Cane, H.V., I.G. Richardson, and T.T. von Rosenvinge, Cosmic ray decreases: 1964–1994, J. Geophys. Res., 101, 21561, 1996. [NASA ADS] [CrossRef]
  • Cane, H.V., R.A. Mewaldt, C.M.S. Cohen, and T.T. von Rosenvinge, Role of flares and shocks in determining solar energetic particle abundances, J. Geophys. Res., 111, A06S90, DOI: 10.1029/2005JA011071, 2006. [CrossRef]
  • Chao, J.K., and R.P. Lepping, A Correlative study of SSC’s, interplanetary shocks, and solar activity, J. Geophys. Res., 79, 1799, 1974. [CrossRef]
  • Connick, D.E., C.W. Smith, and N.A. Schwadron, Interplanetary magnetic flux depletion during protracted solar minima, Astrophys. J., 727, 8, DOI: 10.1088/0004-637X/727/1/8, 2011. [CrossRef]
  • Crooker, N.U., and K.I. Gringauz, On the low correlations between long-term averages of solar wind speed and geomagnetic activity after 1976, J. Geophys. Res., 98, 59, 1993. [CrossRef]
  • Crooker, N.U., J. Feynman, and J.T. Gosling, On the high correlation between long-term averages of solar wind speed and geomagnetic activity, J. Geophys. Res., 82, 1933, 1977. [NASA ADS] [CrossRef]
  • Dungey, J.W., Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47, 1961. [NASA ADS] [CrossRef]
  • Echer, E., W.D. Gonzalez, B.T. Tsurutani, and A.L.C. Gonzalez, Interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT) during solar cycle 23 (1996–2006), J. Geophys. Res., 113, A05221, 2008. [NASA ADS] [CrossRef]
  • Emery, B.A., I.G. Richardson, D.S. Evans, and F.J. Rich, Solar wind structure sources and periodicities of auroral electron power over three solar cycles, J. Atmosph. Solar-Terr. Phys., 71, 1157, DOI: 10.1016/j.jastp.2008.08.005, 2009. [CrossRef]
  • Emery, B.A., I.G. Richardson, D.S. Evans, F.J. Rich, and G.R. Wilson, Solar rotational periodicities and the semiannual variation in the solar wind, radiation belt, and aurora, Solar Phys., 274, 399, DOI: 10.1007/s11207-011-9758-x, 2011. [CrossRef]
  • Feminella, F., and M. Storini, Large scale dynamical phenomena during solar activity cycles, A&A, 322, 311, 1997.
  • Feldman, W.C., J.R. Asbridge, S.J. Bame, E.E. Fenimore, and J.T. Gosling, Origin of solar wind interstream flows: Near Equitorial coronal streamers, J. Geophys. Res., 86, 5408, 1981. [CrossRef]
  • Forbush, S.E., On the effects in the cosmic ray intensity observed during the recent magnetic storm, Phys. Rev., 51, 1108, 1937. [NASA ADS] [CrossRef]
  • Gnevyshev, M.N., On the 11-years cycle of solar activity, Sol. Phys., 1, 107, 1967. [NASA ADS] [CrossRef]
  • Gnevyshev, M.N., Essential features of the 11 year solar cycle, Sol. Phys., 51, 175, 1977. [NASA ADS] [CrossRef]
  • Gold, T., Discussion of shock waves and rarefied gases, in Gas Dynamics of Cosmic Clouds, North-Holland Publishing Co, Amsterdam, 193, 1955.
  • Gosling, J.T., J.R. Asbridge, S.J. Bame, A.H. Hundhausen, and I.B. Strong, Discontinuities in the solar wind associated with sudden geomagnetic impulses and sudden commencements, J. Geophys. Res., 72, 3357, 1967. [CrossRef]
  • Gosling, J.T., D.J McComas, J.L. Phillips, and S.J. Bame, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections, 96, 7831, 1991.
  • Hedgecock, P.C., Measurements of the interplanetary magnetic field in relation to the modulation of cosmic rays, Solar Phys., 42, 497, 1975. [CrossRef]
  • Huttunen, K., and H. Koskinen, Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity, Ann. Geophys., 22, 1729, 2004. [CrossRef]
  • Iucci, N., M. Parisi, M. Storini, and G. Villoresi, High speed solar wind streams and galactic cosmic ray modulation, Nuovo Cimento, 2C, 421, 1979.
  • Ji, E.-Y., Y.-J. Moon, and K.-H. Kim, Statistical comparison of interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT), J. Geophys. Res., 115, A10232, DOI: 10.1029/2009JA015112, 2010. [NASA ADS] [CrossRef]
  • Kane, R.P., Which one is the “Gnevyshev” gap? Solar Phys., 229, 387, 2005. [CrossRef]
  • King, J.H., and N.E. Papitashvili, Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and field data, J. Geophys. Res., 110, 2104, 2005. [NASA ADS] [CrossRef]
  • Klecker, B., H. Kunow, H.V. Cane, S. Dalla, B. Heber, et al., Energetic particle observations, Space Sci. Rev., 123, 217, 2006. [CrossRef]
  • Klein, L.W., and L.F. Burlaga, Interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 87, 613, 1982. [NASA ADS] [CrossRef]
  • Krieger, A.S., A.F. Timothy, and E.C. Roelof, A coronal hole and its identification as the source of a high velocity solar wind stream, Sol. Phys., 29, 505, 1973. [NASA ADS] [CrossRef]
  • Love, J.J., Long-term biases in geomagnetic K and αα indices, Ann. Geophys, 29, 1365, 2011. [CrossRef]
  • Mayaud, P.N., The αα indices: A 100-year series characterising the geomagnetic activity, J. Geophys. Res., 77, 6870, 1972. [NASA ADS] [CrossRef]
  • Menvielle, M., and A. Berthelier, The K-derived planetary indices: Description and availability, Rev. Geophys., 29, 415, DOI: 10.1029/91RG00994, 1991. [CrossRef]
  • Norton, A.A., and J.C. Gallagher, Solar-cycle characteristics examined in separate hemispheres: Phase, Gnevyshev gap, and length of minimum, Solar Phys., 261, 193, 2010. [NASA ADS] [CrossRef]
  • O’Brien, T.P., and R.L. McPherron, An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay, J. Geophys. Res., 105, 7707, 2000. [CrossRef]
  • Owens, M.J., and N.U. Crooker, Coronal mass ejections and magnetic flux buildup in the heliosphere, J. Geophys. Res., 111, A10104, DOI: 10.1029/2006JA011641, 2006. [CrossRef]
  • Owens, M.J., N.U. Crooker, N.A. Schwadron, T.S. Horbury, S. Yashiro, et al., Conservation of open solar magnetic flux and the floor in the heliospheric magnetic field, Geophys. Res. Lett., 35, L20108, DOI: 10.1029/2008GL035813, 2008. [CrossRef]
  • Richardson, I.G., Energetic particles and corotating interaction regions in the solar wind, Space Sci. Rev., 111, 267, 2004. [NASA ADS] [CrossRef]
  • Richardson, I.G., The formation of CIRs at stream-stream interfaces and resultant geomagnetic activity, in Recurrent Magnetic Storms: Corotating Solar Wind Streams, ed. B.T., Tsurutani, et al., A.G.U. Geophysical Monograph, 167, 45, 2006. [CrossRef]
  • Richardson, I.G., and H.V. Cane, Signatures of shock drivers in the solar wind and their dependence on the solar source location, J. Geophys. Res., 98, 15295, 1993. [CrossRef]
  • Richardson, I.G., and H.V. Cane, Regions of abnormally low proton temperature in the solar wind (1965–1991) and their association with ejecta, J. Geophys. Res., 100, 23397, 1995. [NASA ADS] [CrossRef]
  • Richardson, I.G., and H.V. Cane, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): Catalog and summary of properties, Solar Phys., 264, 189, 2010. [NASA ADS] [CrossRef]
  • Richardson, I.G., and H.V. Cane, Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during 1995–2009 and implications for storm forecasting, Space Weather, 9, S07005, DOI: 10.1029/2011SW000670, 2011a. [NASA ADS] [CrossRef]
  • Richardson, I.G., and H.V. Cane, Galactic Cosmic Ray Intensity Response to Interplanetary Coronal Mass Ejections/Magnetic Clouds in 1995–2009, Solar Phys, 270, 609, DOI: 10.1007/s11207-011-9774-x, 2011b. [NASA ADS] [CrossRef]
  • Richardson, I.G., G. Wibberenz, and H.V. Cane, The relationship between recurring cosmic ray depressions and corotating solar wind streams at ≤1 AU: IMP 8 and Helios 1 and 2 anticoincidence guard rate observations, J. Geophys. Res., 101, 13483, 1996. [NASA ADS] [CrossRef]
  • Richardson, I.G., C.J. Farrugia, and H.V. Cane, A statistical study of the behavior of the electron temperature in ejecta, J. Geophys. Res., 102, 4691, 1997. [CrossRef]
  • Richardson, I.G., H.V. Cane, and G. Wibberenz, A 22-year dependence in the size of near-ecliptic corotating cosmic ray depressions during five solar minima, J. Geophys. Res., 104, 12549, 1999. [NASA ADS] [CrossRef]
  • Richardson, I.G., E.W. Cliver, and H.V. Cane, Sources of geomagnetic activity over the solar cycle: Relative importance of CMEs, high-speed streams, and slow solar wind, J. Geophys. Res., 105, 18203, 2000. [CrossRef]
  • Richardson, I.G., E.W. Cliver, and H.V. Cane, Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000, Geophys. Res. Lett., 28, 2569, 2001. [NASA ADS] [CrossRef]
  • Richardson, I.G., H.V. Cane, and E.W. Cliver, Sources of geomagnetic activity during nearly three solar cycles (1972–2000), J. Geophys. Res., 107, DOI: 10.1029/2001JA000504, 2002.
  • Richardson, I.G., D.F. Webb, J. Zhang, D.B. Berdichevsky, D.A. Biesecker, et al., Major geomagnetic storms (Dst ≤ −100 nT) generated by corotating interaction regions, J. Geophys. Res., 111, A07S09, DOI: 10.1029/2005JA011476, 2006. [CrossRef]
  • Riley, P., C. Schatzman, H.V. Cane, I.G. Richardson, and N. Gopalswamy, On the rates of coronal mass ejections: Remote solar and in situ observations, Astrophys. J., 647, 648, 2006. [CrossRef]
  • Robbrecht, E., D. Berghmans, and R.A.M. Van der Linden, Automated LASCO CME catalog for solar cycle 23: Are CMEs scale invariant? Astrophys. J, 691, 1222, DOI: 10.1088/0004-637X/691/2/1222, 2009. [NASA ADS] [CrossRef]
  • Russell, C.T., J.G. Luhmann, and L.K. Jian, How unprecedented a solar minimum? Rev. Geophys., 48, RG2004, DOI: 10.1029/2009RG000316, 2010. [NASA ADS] [CrossRef]
  • Sanderson, T.R., J. Beeck, R.G. Marsden, C. Tranquille, K.-P. Wenzel, R.B. McKibben, and E.J. Smith, A study of the relation between magnetic clouds and Forbush decreases, Proc. 21st Int. Cosmic Ray Conf., 6, 251, 1990.
  • Scherrer, P.H., J.M. Wilcox, L. Svalgaard, T.L. Duvall Jr., P.H. Dittmer, and E.K. Gustafson, The mean magnetic field of the Sun: Observations at Stanford, Solar Phys., 54, 353, 1977. [NASA ADS] [CrossRef]
  • Sheeley, Jr., N.R., J.W. Harvey, and W.C. Feldman, Coronal holes, solar wind streams, and recurrent geomagnetic disturbances, 1973–1976, Solar Phys., 49, 271, 1976. [CrossRef]
  • Sheeley, Jr., N.R., J.S. Asbridge, S.J. Bame, and J.W. Harvey, A pictorial comparison of interplanetary magnetic field polarity, solar wind speed, and geomagnetic disturbance index during the sunspot cycle, Solar Phys., 52, 485, 1977. [CrossRef]
  • Simpson, J.A., A brief history of recurrent solar modulation of the galactic cosmic-rays, Space Sci. Rev., 83, 169, 1998. [CrossRef]
  • Simpson, J.A., H.W. Babcock, and H.D. Babcock, Association of a “unipolar” magnetic region on the Sun with changes of primary cosmic-ray intensity, Phys. Rev., 98, 1402, 1955. [CrossRef]
  • Smith, E.J., and A. Balogh, Decrease in heliospheric magnetic flux in this solar minimum: Recent Ulysses magnetic field observations, Geophys. Res. Lett., 35, L22103, DOI: 10.1029/2008GL035345, 2008. [NASA ADS] [CrossRef]
  • Sugiura, M., Hourly values of equatorial Dst for the IGY, Ann. Int. Geophys. Year, 35, 9, 1964.
  • Tsurutani, B.T., and W.D. Gonzalez, The cause of high intensity long-duration continuous AE activity (HILDCAAs); Interplanetary Alfvén wave trains, Planet. Space Sci., 35, 405, 1987. [NASA ADS] [CrossRef]
  • Tsurutani, B.T., E.J. Smith, W.D. Gonzalez, and F. Tang, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979), 93, 8519, 1988.
  • Tsurutani, B.T., and W.D. Gonzalez, The interplanetary causes of magnetic storms: A review, in Magnetic Storms, ed. B.T., Tsurutani, W.D. Gonzalez, Y. Kamide, and J.K. Arballo, A.G.U. Geophys. Monogr. Ser., Vol. 98, AGU, Washington, DC, 77, 1997. [CrossRef]
  • Tsurutani, B.T., R.L. McPherron, W.D. Gonzalez, G. Lu, N. Gopalswamy, and F.L. Guarnieri, Magnetic storms caused by corotating solar wind streams, in Recurrent Magnetic Storms: Corotating Solar Wind Streams, ed. B.T., Tsurutani, R.L. McPherron, W.D. Gonzalez, G. Lu, J.H.A. Sobral, and N. Gopalswamy, A.G.U. Geophysical Monograph, 167, 1, 2006. [CrossRef]
  • Tsurutani, B.T., E. Echer, and W.D. Gonzalez, The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields, Ann. Geophys., 29, 839, DOI: 10.5194/angeo-29-839-2011, 2011. [CrossRef]
  • Turner, N.E., W.D. Cramer, S.K. Earles, and B.A. Emery, Geoefficiency and energy partitioning in CIR-driven and CME-driven storms, J. Atmosph. Solar-Terr. Phys., 71, 1023, 2009. [CrossRef]
  • Van Hollebeke, M.A., J.R. Wang, and F.B. McDonald, A catalogue of solar cosmic ray events IMPs IV and V (May 1967–Dec. 1972), NASA Goddard Space Flight Center, X-661-74-27, 1974.
  • Wang, C., C.X. Li, Z.H. Huang, and J.D. Richardson, Effect of interplanetary shock strengths and orientations on storm sudden commencement rise times, Geophys. Res. Lett., 33, L14104, DOI: 10.1029/2006GL025966, 2006. [CrossRef]
  • Webb, D.F., and R.A. Howard, The solar cycle variation of coronal mass ejections and the solar wind mass flux, J. Geophys. Res., 99, 4201, 1994. [NASA ADS] [CrossRef]
  • Wilson, R.M., Geomagnetic response to magnetic clouds, Planet. Space Sci., 35, 329, 1987. [CrossRef]
  • Wilson, R.M., On the behavior of the Dst geomagnetic index in the vicinity of magnetic cloud passage at Earth, J. Geophys. Res., 95, 215, 1988. [CrossRef]
  • Yashiro, S., N. Gopalswamy, G. Michalek, O.C. St. Cyr, S.-P. Plunkett, N.B. Rich, and R.A. Howard, A catalog of white light coronal mass ejections observed by the SOHO spacecraft, J. Geophys. Res., 109, A07105, 2004. [NASA ADS] [CrossRef]
  • Zhang, J., I.G. Richardson, D.F. Webb, N. Gopalswamy, E. Huttunen, et al., Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005, J. Geophys. Res., 112, A12105, DOI: 10.1029/2007JA012332, 2007. [CrossRef]
  • Zhao, L., T.H. Zurbuchen, and L.A. Fisk, Global distribution of the solar wind during solar cycle 23: ACE observations, Geophys. Res. Lett., 36, 14104, DOI: 10.1029/2009GL039181, 2009. [NASA ADS] [CrossRef]
  • Zirker, J.B., (ed.), Coronal Holes and High Speed Wind Streams, Skylab Solar Workshop, Colorado University Press, Boulder, CO, 1977.
  • Zurbuchen, T.H., and I.G. Richardson, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections, Space Sci. Rev., 123, 31–34, 2006. [NASA ADS] [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.