Open Access
Issue
J. Space Weather Space Clim.
Volume 2, 2012
Article Number A03
Number of page(s) 13
DOI https://doi.org/10.1051/swsc/2012002
Published online 06 June 2012
  • Banks, P.M., and G. Kockarts, Aeronomy, Academic Press, New York, London, 1973. [Google Scholar]
  • Belehaki, A., N. Jakowski, and B.W. Reinisch, Comparison of ionospheric ionization measurements over Athens using ground ionosonde and GPS-derived TEC values, Radio Sci., 38 (6), 1105, 2003. [CrossRef] [Google Scholar]
  • Belehaki, A., L.J. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, and M. Hatzopoulos, Monitoring and forecasting the ionosphere over Europe: The DIAS project, Space Weather, 4, S12002, DOI: 10.1029/2006SW000270, 2006 (S1.1). [CrossRef] [Google Scholar]
  • Belehaki, A., I. Kutiev, B. Reinisch, N. Jakowski, P. Marinov, I. Galkin, C. Mayer, I. Tsagouri, and T. Herekakis, Verification of the TSMP-assisted Digisonde (TaD) topside profiling technique, Acta Geophysica, DOI: 10.2478/s11600-009-0052-3, 2009. [Google Scholar]
  • Berger, C., R. Biancale, M. Ill, and F. Barlier, Improvement of the empirical thermospheric model DTM: DTM94 – comparative review on various temporal variations and prospects in space geodesy applications, J. Geod., 161, 178, 1998. [Google Scholar]
  • Bilitza, B., L. McKinnell, B.W. Reinisch, and T. Fuller-Rowell, The International Reference Ionosphere (IRI) today and in the future, J. Geodesy, DOI: 10.1007/s00190-010-0427-x, 2011. [Google Scholar]
  • Bowman, B.R., W.K. Tobiska, F.A. Marcos, C.Y. Huang, C.S. Lin, and W.J. Burke, A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices, AIAA/AAS Astrodynamics Specialist Conference, 18–21 August 2008, Honolulu, Hawaii, 19, 2008. [Google Scholar]
  • Bruinsma, S.L., and J.M. Forbes, Anomalous behavior of the thermosphere during solar minimum observed by CHAMP and GRACE, J. Geophys. Res., 115, A11323, DOI: 10.1029/2010JA015605, 2010. [CrossRef] [Google Scholar]
  • Bruinsma, S.L., G. Thuillier, and F. Barlier, The DTM-2000 empirical thermosphere model with new data assimilation and constrains at lower boundary: accuracy and properties, J. Atmos. Sol.-Terr. Phys., 65, 1053–1070, 2003. [CrossRef] [Google Scholar]
  • Bruinsma, S., D. Tamagnan, and R. Biancale, Atmospheric density derived from CHAMP/STAR accelerometer observations, Planet Space Sci., 52, 297–312, 2004. [CrossRef] [Google Scholar]
  • Bruinsma, S., J.M. Forbes, R.S. Nerem, and X. Zhang, Thermospheric density response to the 20–21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data, J. Geophys. Res., 111, A06303, DOI: 10.1029/2005JA011284, 2006. [CrossRef] [Google Scholar]
  • Buonsanto, M.J., D.P. Sipler, G.B. Davenport, and J.M. Holt, Estimation of the O+, O collision frequency from coincident radar and Fabry-Perot observations at Millstone Hill, J. Geophys. Res., 102, 17267–17274, 1997. [CrossRef] [Google Scholar]
  • Chen, C.F., B.W. Reinisch, J.L. Scali, X. Huang, R.R. Gamache, M.J. Buonsanto, and B.D. Ward, The accuracy of ionogram-derived N(h) profiles, Adv. Space Res., 14 (12), 43–46, 1994. [CrossRef] [Google Scholar]
  • Di Giovanni, G., and S.M. Radicella, An analytical model of the electron density profile in the ionosphere, Adv. Space Res., 10, 27, 1990. [CrossRef] [Google Scholar]
  • Emmert, J.T., and J.M. Picone, Climatology of globally averaged thermospheric mass density, J. Geophys. Res., 115, A09326, DOI: 10.1029/2010JA015298, 2010. [CrossRef] [Google Scholar]
  • Galkin, I.A., G.M. Khmyrov, A.V. Kozlov, B.W. Reinisch, X. Huang, and V.V. Paznukhov, The ARTIST 5, Radio Sounding and Plasma Physics, AIP Proceedings, 974, 150–159, 2008. [Google Scholar]
  • Hedin, A.E., MSIS-86 thermospheric model, J. Geophys. Res., 92, 4649–4662, 1987. [NASA ADS] [CrossRef] [Google Scholar]
  • Himmelblau, D.M., Applied Nonlinear Programming, McGraw-Hill, New York, 1972. [Google Scholar]
  • Ivanov-Kholodny, G.S., and A.V. Mikhailov, The Prediction of Ionospheric Conditions, D. Reidel Publishing Company, Dordrecht, Holland, 1986. [Google Scholar]
  • Ivanov-Kholodny, G.S., and G.M. Nikoljsky, The Sun and the Ionosphere, Nauka, Moscow, 1969, pp. 455, (in Russian). [Google Scholar]
  • Kil, H., Y.-S. Kwak, L.J. Paxton, R.R. Meier, and Y. Zhang, O and N2 disturbances in the F region during the 20 November 2003 storm seen from TIMED/GUVI, J. Geophys. Res., 116, A02314, DOI: 10.1029/2010JA016227, 2011. [CrossRef] [Google Scholar]
  • Kutiev, I., P. Marinov, A. Belehaki, B. Reinisch, and N. Jakowski, Reconstruction of topside density profile by using the topside sounder model profiler and Digisonde data, Adv. Space Res., 43 (11), 1683–1687, 2009. [CrossRef] [Google Scholar]
  • Lathuillère, C., M. Menvielle, A. Marchaudon, and S. Bruinsma, A statistical study of the observed and modeled global thermosphere response to magnetic activity at middle and low latitudes, J. Geophys. Res., 113, A07311, DOI: 10.1029/2007JA012991, 2008. [CrossRef] [Google Scholar]
  • Lei, J., W. Wang, A.G. Burns, S.C. Solomon, A.D. Richmond, M. Wiltberger, L.P. Goncharenko, A. Coster, and B.W. Reinisch, Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: initial phase, J. Geophys. Res., 113, A01314, DOI: 10.1029/2007JA012807, 2008. [CrossRef] [Google Scholar]
  • Lei, J., J.P. Thayer, G. Lu, A.G. Burns, W. Wang, E.K. Sutton, and B.A. Emery, Rapid recovery of thermosphere density during the October 2003 geomagnetic storms, J. Geophys. Res., 116, A03306, DOI: 10.1029/2010JA016164, 2011. [CrossRef] [Google Scholar]
  • Litvin, A., W.L. Oliver, J.M. Picone, and M.J. Buonsanto, The upper atmosphere during June 5–11, 1991, J. Geophys. Res., 105, 12789–12796, 2000. [CrossRef] [Google Scholar]
  • Mikhailov, A.V., and J.C. Foster, Daytime thermosphere above Millstone Hill during severe geomagnetic storms, J. Geophys. Res., 102, 17275–17282, 1997. [CrossRef] [Google Scholar]
  • Mikhailov, A.V., and M. Förster, Some F2-layer effects during the January 06–11, 1997 CEDAR storm period as observed with the Millstone Hill incoherent scatter facility, J. Atmos. Sol.-Terr. Phys., 61, 249–261, 1999. [CrossRef] [Google Scholar]
  • Mikhailov, A.V., and W. Kofman, An interpretation of ion composition diurnal variation deduced from EISCAT observations, Ann Geophysicae, 19, 351–358, 2001. [CrossRef] [Google Scholar]
  • Mikhailov, A.V., and J. Lilensten, A revised method to extract thermospheric parameters from incoherent scatter observations, Ann Geophysics, Supp., 47 (N2/3), 985–1008, 2004. [Google Scholar]
  • Mikhailov, A.V., and L. Perrone, On the mechanism of seasonal and solar cycle NmF2 variations: A quantitative estimate of the main parameters contribution using incoherent scatter radar observations, J. Geophys. Res., 116, A03319, DOI: 10.1029/2010JA016122, 2011. [CrossRef] [Google Scholar]
  • Mikhailov, A.V., and K. Schlegel, Self-consistent modeling of the daytime electron density profile in the ionospheric F-region, Ann. Geophysicae, 15, 314–326, 1997. [Google Scholar]
  • Mikhailov, A.V., and K. Schlegel, Geomagnetic storm effects at F1-layer heights from incoherent scatter observations, Ann Geophysicae, 21, 583–596, 2003. [CrossRef] [Google Scholar]
  • Munninghoff, D.E., Ion and electron temperatures in the topside ionosphere, in Aeronomy Report 86, Aeronom. Lab. Univ.. Illinois, Urbana, 1979. [Google Scholar]
  • Nava, B., P. Coisson, and S.M. Radicella, A new version of the NeQuick ionosphere electron density model, J. Atmos. Sol.-Terr. Phys., 70, 1856–1862, 2008. [CrossRef] [Google Scholar]
  • Nusinov, A.A., Solar activity dependence of the intensity of shortwave radiation, Geomag. i Aeronom., 24, 529–536, 1984, (in Russian). [Google Scholar]
  • Nusinov, A.A., Models for prediction of EUV and X-ray solar radiation based on 10.7-cm radio emission, in Proceedings Workshop on Solar Electromagnetic Radiation for Solar Cycle 22, Boulder, Co., July 1992, ed. R.F., Donnely, NOAA ERL. Boulder, Co, USA, 354–359, 1992. [Google Scholar]
  • Oliver, W.L., and K. Glotfelty, O+-O collision cross section and long-term F region O density variations deduced from the ionospheric energy budget, J. Geophys. Res., 101, 21769–21784, 1996. [CrossRef] [Google Scholar]
  • Pesnell, W.D., K. Omidvar, and W.R. Hoegy, Momentum transfer collision frequency of O+-O, Geophys. Res. Lett., 20, 1343–1346, 1993. [CrossRef] [Google Scholar]
  • Picone, J.M., A.E. Hedin, D.P. Drob, and A.C. Aikin, NRLMSISE-00 empirical model of the atmosphere: Statistical comparison and scientific issues, J. Geophys. Res., 107, 1468, DOI: 10.1029/2002JA009430, 2002. [CrossRef] [Google Scholar]
  • Prölss, G.W., Physics of the Earth’s Space Environment, Springer-Verlag, Berlin, Heidelberg, 2004, 513. [Google Scholar]
  • Prölss, G.W., S. Werner, M.V. Codrescu, T.J. Fuller-Rowell, A.G. Burns, and T.L. Killeen, The thermospheric-ionospheric storm of Dec 8, 1982: Model predictions and observations, Adv. Space Res., 22 (1), 123–128, 1998. [CrossRef] [Google Scholar]
  • Radicella, S.M., and R. Leitinger, The evolution of the DGR approach to model electron density profiles, Adv. Space Res., 27 (1), 35–40, 2001. [CrossRef] [Google Scholar]
  • Reinisch, B.W., and X. Huang, Automatic calculation of electron density profiles from digital ionograms, 3, Processing of bottomside ionograms, Radio Sci., 18, 477–492, 1983. [CrossRef] [Google Scholar]
  • Reinisch, B.W., and X. Huang, Deducing topside profiles and total electron content from bottomside ionograms, Adv, Space Res., 27 (1), 23–30, 2001. [CrossRef] [Google Scholar]
  • Reinisch, B.W., I.A. Galkin, G. Khmyrov, A. Kozlov, and D.F. Kitrosser, Automated collection and dissemination of ionospheric data from the digisonde network, Adv. Radio Sci., 2, 241–247, 2004. [CrossRef] [Google Scholar]
  • Reinisch, B.W., X. Huang, I.A. Galkin, V. Paznukhov, and A. Kozlov, Recent advances in real-time analysis of ionograms and ionospheric drift measurements with digisondes, J. Atmos. Sol.-Terr. Phys., 67, 1054–1062, 2005. [CrossRef] [Google Scholar]
  • Reinisch, B.W., P. Nsumei, X. Huang, and D. K. Bilitza, Modeling the F2 topside, plasmasphere for IRI using IMAGE/RPI, ISIS data, Adv. Space Res., 39, 731–738, 2007. [CrossRef] [Google Scholar]
  • Reinisch, B.W., P. Nsumei, X. Huang, and D. Bilitza, A new Vary-Chap model of topside electron density profiles based on ISIS-2 sounding data, in Proceedings of the Ionospheric Effects Symposium, A 130, JMG Associates, Ltd., Alexandria, VA, USA, 2011. [Google Scholar]
  • Richards, P.G., Reexamination of ionospheric photochemistry, J. Geophys. Res., 116, A08307, DOI: 10.1029/2011JA016613, 2011. [CrossRef] [Google Scholar]
  • Richards, P.G., and D.G. Torr, Ratios of photoelectron to EUV ionization rates for aeronomic studies, J. Geophys. Res., 93, 4060–4066, 1988. [CrossRef] [Google Scholar]
  • Richards, P.G., J.A. Fennelly, and D.G. Torr, EUVAC: A solar EUV flux model for aeronomic calculations, J. Geophys. Res., 99, 8981–8992, 1994. [NASA ADS] [CrossRef] [Google Scholar]
  • Richmond, A.D., E.C. Ridley, and R.G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophys. Res. Lett., 19, 601, 604, 1992. [CrossRef] [Google Scholar]
  • Torr, M.R., D.G. Torr, R.A. Ong, and H.E. Hinteregger, Ionization frequencies for major thermospheric constituents as a function of solar cycle 21, Geophys. Res. Lett., 6, 771–774, 1979. [NASA ADS] [CrossRef] [Google Scholar]
  • Wang, W., M. Wiltberger, A.G. Burns, S.C. Solomon, T.L. Killeen, N. Maruyama, and J.G. Lyon, Initial results from the coupled magnetosphere-ionosphere-thermosphere model: thermosphere-ionosphere responses, J. Atmos. Sol.-Terr. Phys., 66/15–16, 1425, 2004. [CrossRef] [Google Scholar]
  • Wang, W., A.G. Burns, M. Wiltberger, S.C. Solomon, and T.L. Killeen, Altitude variations of the horizontal thermospheric winds during geomagnetic storms, J. Geophys. Res., 113, A02301, DOI: 10.1029/2007JA012374, 2008. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.