Issue |
J. Space Weather Space Clim.
Volume 5, 2015
Satellite mission concepts developed at the Alpbach 2013 Summer School on space weather
|
|
---|---|---|
Article Number | A5 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/swsc/2015005 | |
Published online | 17 February 2015 |
- Acuna, M.H. Space-based magnetometers. Rev. Sci. Instrum., 73 (11), 3717–3736, 2002, http://scitation.aip.org/content/aip/journal/rsi/73/11/10.1063/1.1510570. [CrossRef] [Google Scholar]
- Alissandrakis, C.A., and F. Chiuderi Drago. Coronal magnetic fields from Faraday rotation observations. Sol. Phys., 160, 171–179, 1995. [CrossRef] [Google Scholar]
- Amari, T., J.J. Aly, J.F. Luciani, T.Z. Boulmezaoud, and Z. Mikic. Reconstructing the solar coronal magnetic field as a force-free magnetic field. Sol. Phys., 174, 129–149, 1997. [NASA ADS] [CrossRef] [Google Scholar]
- Aulanier, G., P. Démoulin, C.J. Schrijver, M. Janvier, E. Pariat, and B. Schmieder. The standard flare model in three dimensions. II. Upper limit on solar flare energy. A&A, 549, A66, 2013. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Bernath, P.F., C.T. McElroy, M.C. Abrams, C.D. Boone, M. Butler, et al. Atmospheric Chemistry Experiment (ACE): mission overview. Geophys. Res. Lett., 32, L15S01, 2005. [CrossRef] [Google Scholar]
- Bommier, V., and S. Sahal-Brechot. The Hanle effect of the coronal L-alpha line of hydrogen – theoretical investigation. Sol. Phys., 78, 157–178, 1982. [NASA ADS] [CrossRef] [Google Scholar]
- Brueckner, G.E., R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, et al. The Large Angle Spectroscopic Coronagraph (LASCO). Sol. Phys., 162, 357–402, 1995. [NASA ADS] [CrossRef] [Google Scholar]
- Cane, H.V., and I.G. Richardson. Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002. J. Geophys. Res. [Space Phys.], 108 (A4), 2003, ISSN 2156-2202. DOI: 10.1029/2002JA009817. [Google Scholar]
- Cheung, M.C.M., and M.L. DeRosa. A method for data-driven simulations of evolving solar active regions. Astrophys. J., 757, 147, 2012. [Google Scholar]
- Chevalier, R.A., and D.L. Lambert. The excitation of the forbidden coronal lines. I: Fe XIII λλ 10747, 10798 and 3388. Sol. Phys., 10, 115–134, 1969. [CrossRef] [Google Scholar]
- Cliver, E.W., and W.F. Dietrich. The 1859 space weather event revisited: limits of extreme activity. J. Space Weather Space Clim., 3 (26), A31, 2013. [CrossRef] [EDP Sciences] [Google Scholar]
- Curto, J.J., and L.R. Gaya-Piqué. Geoeffectiveness of solar flares in magnetic crochet (sfe) production: I – Dependence on their spectral nature and position on the solar disk. J. Atmos. Sol. Terr. Phys., 71, 1695–1704, 2009, ISSN 1364-6826. http://www.sciencedirect.com/science/article/pii/S1364682609001205. [Google Scholar]
- Demoulin, P., J.C. Henoux, C.H. Mandrini, and E.R. Priest. Can we extrapolate a magnetic field when its topology is complex? Sol. Phys., 174, 73–89, 1997. [NASA ADS] [CrossRef] [Google Scholar]
- Domingo, V., B. Fleck, and A.I. Poland. The SOHO Mission: an overview. Sol. Phys., 162, 1–37, 1995. [NASA ADS] [CrossRef] [Google Scholar]
- Emslie, A.G., H. Kucharek, B.R. Dennis, N. Gopalswamy, G.D. Holman, et al. Energy partition in two solar flare/CME events. J. Geophys. Res. [Space Phys.], 109, A10104, 2004. [NASA ADS] [CrossRef] [Google Scholar]
- Feynman, J., and S.B. Gabriel. On space weather consequences and predictions. J. Geophys. Res. [Space Phys.], 105 (A5), 10543–10564, 2000, ISSN 2156-2202. DOI: 10.1029/1999JA000141. [Google Scholar]
- Feynman, J., and S.F. Martin. The initiation of coronal mass ejections by newly emerging magnetic flux. J. Geophys. Res. [Space Phys.], 100 (A3), 3355–3367, 1995, ISSN 2156-2202. DOI: 10.1029/94JA02591. [CrossRef] [Google Scholar]
- Flower, D.R., and G. Pineau des Forets. Excitation of the Fe XIII spectrum in the solar corona. A&A, 24, 181, 1973. [Google Scholar]
- Gabriel, A.H. Measurements on the Lyman Alpha Corona (Papers presented at the Proceedings of the International Symposium on the 1970 Solar Eclipse, held in Seattle, U.S.A., 18–21 June, 1971.). Sol. Phys., 21, 392–400, 1971. [NASA ADS] [CrossRef] [Google Scholar]
- Gary, D.E., and G.J. Hurford. Coronal temperature, density, and magnetic field maps of a solar active region using the Owens Valley Solar Array. Astrophys. J., 420, 903–912, 1994. [Google Scholar]
- Gopalswamy, N., A. Lara, S. Yashiro, S. Nunes, and R.A. Howard. Coronal mass ejection activity during solar cycle 23. In: A. Wilson, Editor. Solar Variability as an Input to the Earth’s Environment, volume 535 of ESA Special Publication, 403–414, 2003. [Google Scholar]
- Gopalswamy, N., S. Yashiro, and S. Akiyama. Geoeffectiveness of halo coronal mass ejections. J. Geophys. Res. [Space Phys.], 112, 2007, ISSN 2156-2202. DOI: 10.1029/2006JA012149. [Google Scholar]
- Harder, J., G. Lawrence, J. Fontenla, G. Rottman, and T. Woods. The spectral irradiance monitor: scientific requirements, instrument design, and operation modes. Sol. Phys., 230, 141–167, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- Judge, P.G., R. Casini, S. Tomczyk, D.P. Edwards, and E. Francis. Coronal magnetometry: a feasibility study. NASA STI/Recon Technical Report N, 2, 27999, 2001. [Google Scholar]
- Kaiser, M.L., T.A. Kucera, J.M. Davila, O.C. St. Cyr, M. Guhathakurta, and E. Christian. The STEREO Mission: an introduction. Space Sci. Rev., 136, 5–16, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Kretzschmar, M. The Sun as a star: observations of white-light flares. A&A, 530, A84, 2011. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Lin, H., J.R. Kuhn, and R. Coulter. Coronal magnetic field measurements. Astrophys. J., 613, L177–L180, 2004. [Google Scholar]
- Luhmann, J.G., J.T. Gosling, J.T. Hoeksema, and X. Zhao. The relationship between large-scale solar magnetic field evolution and coronal mass ejections. J. Geophys. Res. [Space Phys.], 103 (A4), 6585–6593, 1998, ISSN 2156-2202. DOI: 10.1029/97JA03727. [NASA ADS] [CrossRef] [Google Scholar]
- Mancuso, S., and S.R. Spangler. Coronal Faraday rotation observations: measurements and limits on plasma inhomogeneities. Astrophys. J., 525 (1), 195, 1999, http://stacks.iop.org/0004-637X/525/i=1/a=195. [Google Scholar]
- McClymont, A.N., L. Jiao, and Z. Mikic. Problems and progress in computing three-dimensional coronal active region magnetic fields from boundary data. Sol. Phys., 174, 191–218, 1997. [NASA ADS] [CrossRef] [Google Scholar]
- Millard, A., P. Lemaire, and J.C. Vial. EUV imager and spectrometer for Lyot and Solar Orbiter space missions. In: B. Warmbein, Editor. 5th International Conference on Space Optics, volume 554 of ESA Special Publication, 351–354, 2004. [Google Scholar]
- Miralles, M., and J. Almeida. The Sun, the Solar Wind, and the Heliosphere, Springer, IAGA Special Sopron Book Series, ISBN: 9789048197873, 2011. [CrossRef] [Google Scholar]
- Müller, D., R.G. Marsden, O.C. St. Cyr, and H.R. Gilbert. Solar orbiter. Sol. Phys., 285 (1–2), 25–70, 2013, ISSN 0038-0938. DOI: 10.1007/s11207-012-0085-7. [NASA ADS] [CrossRef] [Google Scholar]
- Mustajab, F., and Badruddin. Relative geo-effectiveness of coronal mass ejections with distinct features in interplanetary space. Planet. Space Sci., 82–83, 43–61, 2013, ISSN 0032-0633. http://www.sciencedirect.com/science/article/pii/S0032063313000706. [CrossRef] [Google Scholar]
- Ness, N.F., K.W. Behannon, R.P. Lepping, and K.H. Schatten. Use of two magnetometers for magnetic field measurements on a spacecraft. J. Geophys. Res., 76 (16), 3564–3573, 1971, ISSN 2156-2202. DOI: 10.1029/JA076i016p03564. [CrossRef] [Google Scholar]
- Owens, M.J., and N.U. Crooker. Coronal mass ejections and magnetic flux buildup in the heliosphere. J. Geophys. Res. [Space Phys.], 111 (A10), 2006, ISSN 2156-2202. DOI: 10.1029/2006JA011641. [Google Scholar]
- Patzold, M., M.K. Bird, H. Volland, G.S. Levy, B.L. Seidel, and C.T. Stelzried. The mean coronal magnetic field determined from HELIOS Faraday rotation measurements. Sol. Phys., 109, 91–105, 1987. [NASA ADS] [CrossRef] [Google Scholar]
- Peter, H., L. Abbo, V. Andretta, F. Auchère, A. Bemporad, et al. Solar magnetism eXplorer (SolmeX). Exploring the magnetic field in the upper atmosphere of our closest star. Exp. Astron., 33, 271–303, 2012. [Google Scholar]
- Raouafi, N.E., S.K. Solanki, and T. Wiegelmann. Hanle effect diagnostics of the coronal magnetic field: a test using realistic magnetic field configurations. In: S.V., Berdyugina, K.N. Nagendra, and R. Ramelli, Editors. Solar Polarization 5: In Honor of Jan Stenflo, volume 405 of Astronomical Society of the Pacific Conference Series, 429, 2009. [Google Scholar]
- Reinard, A.A., J. Henthorn, R. Komm, and F. Hill. Evidence that temporal changes in solar subsurface helicity precede active region flaring. The Astrophysical Journal Letters, 710 (2), L121, 2010, http://stacks.iop.org/2041-8205/710/i=2/a=L121. [Google Scholar]
- Sahal-Brechot, S. The Hanle effect applied to magnetic field diagnostics. Space Sci. Rev., 29, 391–401, 1981. [NASA ADS] [CrossRef] [Google Scholar]
- Santandrea, S., K. Gantois, K. Strauch, F. Teston, E. Tilmans, C. Baijot, D. Gerrits, A. De Groof, G. Schwehm, and J. Zender. PROBA2: mission and spacecraft overview. Sol. Phys., 286, 5–19, 2013. [NASA ADS] [CrossRef] [Google Scholar]
- Scherrer, P.H., J. Schou, R.I. Bush, A.G. Kosovichev, R.S. Bogart, et al. The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Sol. Phys., 275, 207–227, 2012. [Google Scholar]
- Schrijver, C.J., J. Beer, U. Baltensperger, E.W. Cliver, M. Güdel, et al. Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records. J. Geophys. Res. [Space Phys.], 117, A08103, 2012. [Google Scholar]
- Seaton, D.B., D. Berghmans, B. Nicula, J.-P. Halain, A. De Groof, et al. The SWAP EUV imaging telescope part I: instrument overview and pre-flight testing. Sol. Phys., 286, 43–65, 2013. [NASA ADS] [CrossRef] [Google Scholar]
- Sun, X., J.T. Hoeksema, Y. Liu, T. Wiegelmann, K. Hayashi, Q. Chen, and J. Thalmann. Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. Astrophys. J., 748, 77, 2012. [Google Scholar]
- Tomczyk, S., G.L. Card, T. Darnell, D.F. Elmore, R. Lull, P.G. Nelson, K.V. Streander, J. Burkepile, R. Casini, and P.G. Judge. An instrument to measure coronal emission line polarization. Sol. Phys., 247, 411–428, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Wenzel, K.P., R.G. Marsden, D.E. Page, and E.J. Smith. The ULYSSES mission. A&AS, 92, 207, 1992. [Google Scholar]
- Woods, T.N., G. Kopp, and P.C. Chamberlin. Contributions of the solar ultraviolet irradiance to the total solar irradiance during large flares. J. Geophys. Res. [Space Phys.], 111, A10S14, 2006. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.