Open Access
J. Space Weather Space Clim.
Volume 5, 2015
Article Number A12
Number of page(s) 20
Published online 16 June 2015
  • Aran, A. Synthesis of proton flux profiles of SEP events associated with interplanetary shocks. The tool SOLPENCO. Ph.D. thesis, Universitat de Barcelona, Barcelona, Spain, 2007. URL
  • Aran, A., B. Sanahuja, and D. Lario. SOLPENCO: A solar particle engineering code. Adv. Space Res., 37, 1240–1246, 2006. [NASA ADS] [CrossRef]
  • Aran, A., D. Lario, B. Sanahuja, R.G. Marsden, M. Dryer, C.D. Fry, and S.M.P. McKenna-Lawlor. Modeling and forecasting solar energetic particle events at Mars: the event on 6 March 1989. A&A, 469, 1123–1134, 2007, DOI: 10.1051/0004-6361:20077233. [NASA ADS] [CrossRef] [EDP Sciences]
  • Aran, A., B. Sanahuja, and D. Lario. Comparing proton fluxes of central meridian SEP events with those predicted by SOLPENCO. Adv. Space Res., 42, 1492–1499, 2008, DOI: 10.1016/j.asr.2007.08.003. [CrossRef]
  • Aran, A., C. Jacobs, R. Rodríguez-Gasén, B. Sanahuja, and S. Poedts. WP410: Initial and boundary conditions for the shock-and- particle model. SEPEM Technical Report, ESA/ESTEC Contract 20162/06/NL/JD, 1–58, 2011. URL
  • Battarbee, M., T. Laitinen, and R. Vainio. Heavy-ion acceleration and self-generated waves in coronal shocks. A&A, 535, A34, 2011, DOI: 10.1051/0004-6361/201117507. [NASA ADS] [CrossRef] [EDP Sciences]
  • Battarbee, M., R. Vainio, T. Laitinen, and H. Hietala. Injection of thermal and suprathermal seed particles into coronal shocks of varying obliquity. A&A, 558, A110, 2013, DOI: 10.1051/0004-6361/201321348. [NASA ADS] [CrossRef] [EDP Sciences]
  • Bell, A.R. The acceleration of cosmic rays in shock fronts. Mon. Not. R. Astron. Soc., 182, 147–156, 1978. [NASA ADS] [CrossRef]
  • Cane, H.V. The structure and evolution of interplanetary shocks and the relevance for particle acceleration. Nucl. Phys. B Proc. Suppl., 39, 35–44, 1995, DOI: 10.1016/0920-5632(95)00005-T. [NASA ADS] [CrossRef]
  • Cane, H.V., and D. Lario. An Introduction to CMEs and Energetic Particles. Space Sci. Rev., 123, 45–56, 2006, DOI: 10.1007/s11214-006-9011-3. [CrossRef]
  • Cliver, E.W., S.W. Kahler, M.A. Shea, D.F. Smar, and D.F. Smart. Injection onsets of 2 GeV protons, 1 MeV electrons, and 100 keV electrons in solar cosmic ray flares. ApJ, 260, 362–370, 1982, DOI: 10.1086/160261. [NASA ADS] [CrossRef]
  • Crosby, N.B., D. Heynderickx, P. Jiggens, A. Aran, B. Sanahuja, et al. SEPEM: a tool for statistical modelling the solar energetic particle environment. Space Weather, 13, 2015, DOI: 10.1002/2013SW001008.
  • de Sterck, H., S. Rostrup, and F. Tian. A fast and accurate algorithm for computing radial transonic flows. J. Comput. Appl. Math., 223, 916–928, 2009. [CrossRef]
  • Desai, M.I., and D. Burgess. Particle acceleration at coronal mass ejection-driven interplanetary shocks and the Earth’s bow shock. J. Geophys. Res. [Space Phys.], 113, A00B06, 2008, DOI: 10.1029/2008JA013219. [CrossRef]
  • Feynman, J., and S.B. Gabriel. On space weather consequences and predictions. J. Geophys. Res., 105, 10543–10564, 2000, DOI: 10.1029/1999JA000141. [NASA ADS] [CrossRef]
  • Giacalone, J. Particle Acceleration at Shocks Moving through an Irregular Magnetic Field. ApJ, 624, 765–772, 2005, DOI: 10.1086/429265. [NASA ADS] [CrossRef]
  • Gold, R.E., S.M. Krimigis, S.E. Hawkins III, D.K. Haggerty, D.A. Lohr, E. Fiore, T.P. Armstrong, G. Holland, and L.J. Lanzerotti. Electron, proton, and alpha monitor on the advanced composition explorer spacecraft. Space Sci. Rev., 86, 541–562, 1998, DOI: 10.1023/A:1005088115759. [NASA ADS] [CrossRef]
  • Gopalswamy, N., S. Yashiro, S. Krucker, G. Stenborg, and R.A. Howard. Intensity variation of large solar energetic particle events associated with coronal mass ejections. J. Geophys. Res. [Space Phys.], 109 (A18), A12105, 2004, DOI: 10.1029/2004JA010602. [NASA ADS] [CrossRef]
  • Guo, F., J.R. Jokipii, and J. Kota. Particle acceleration by collisionless shocks containing large-scale magnetic-field variations, ApJ, 725, 128–133, 2010, DOI: 10.1088/0004-637X/725/1/128. [CrossRef]
  • Hasselmann, K., and G. Wibberenz. A note on the parallel diffusion coefficient. ApJ, 162, 1049, 1970. [NASA ADS] [CrossRef]
  • Heras, A.M., B. Sanahuja, Z.K. Smith, T. Detman, and M. Dryer. The influence of the large-scale interplanetary shock structure on a low-energy particle event. ApJ, 391, 359–369, 1992, DOI: 10.1086/171351. [NASA ADS] [CrossRef]
  • Heras, A., B. Sanahuja, T.R. Sanderson, R.G. Marsden, and K.-P. Wenzel. Observational signatures of the influence of the interplanetary shocks on the associated low-energy particle events. J. Geophys. Res., 99, 43–51, 1994. [NASA ADS] [CrossRef]
  • Heras, A.M., B. Sanahuja, D. Lario, Z.K. Smith, T. Detman, and M. Dryer. Three low-energy particle events: modeling the influence of the parent interplanetary shock. ApJ, 445, 497–508, 1995, DOI: 10.1086/175714. [NASA ADS] [CrossRef]
  • Horne, R.B., S.A. Glauert, N.P. Meredith, H. Koskinen, R. Vainio, et al. Forecasting the Earth’s radiation belts and modelling solar energetic particle events: recent results from SPACECAST. J. Space Weather Space Clim., 3, A20, 2013, DOI: 10.1051/swsc/2013042. [CrossRef] [EDP Sciences]
  • Jacobs, C., and S. Poedts. A polytropic model for the solar wind. Adv. Space Res., 48, 1958–1966, 2011. [NASA ADS] [CrossRef]
  • Jacobs, C., S. Poedts, B. Van der Holst, and E. Chané. On the effect of the background wind on the evolution of interplanetary shock waves. A&A, 430, 1099–1107, 2005, DOI: 10.1051/0004-6361:20041676. [NASA ADS] [CrossRef] [EDP Sciences]
  • Jacobs, C., B. van der Holst, and S. Poedts. Comparison between 2.5D and 3D simulations of coronal mass ejections. A&A, 470, 359–365, 2007, DOI: 10.1051/0004-6361:20077305. [NASA ADS] [CrossRef] [EDP Sciences]
  • Jiggens, P.T.A., S.B. Gabriel, D. Heynderickx, N. Crosby, A. Glover, and A. Hilgers. ESA SEPEM project: peak flux and fluence model. IEEE Trans. Nucl. Sci., 1066–1077, 2012, DOI: 10.1109/TNS.2012.2198242. [CrossRef]
  • Kahler, S.W. The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: effects of ambient particle intensities and energy spectra. J. Geophys. Res., 106 (20), 20947–20956, 2001, DOI: 10.1029/2000JA002231. [NASA ADS] [CrossRef]
  • Kallenrode, M.-B. The temporal and spatial development of MeV proton acceleration at interplanetary shocks. J. Geophys. Res., 102, 22347–22364, 1997, DOI: 10.1029/97JA01678. [NASA ADS] [CrossRef]
  • Kissmann, R., and J. Pomoell. A semidiscrete finite volume constrained transport method on orthogonal curvilinear grids. SIAM Journal on Scientific Computing, 34, A763–A791, 2012, DOI: 10.1137/110834329. [CrossRef]
  • Kissmann, R., J. Pomoell, and W. Kley. A central conservative scheme for general rectangular grids. J. Comput. Phys., 228, 2119–2131, 2009, DOI: 10.1016/ [CrossRef]
  • Kocharov, L., V.J. Pizzo, D. Odstrcil, and R.D. Zwickl. A unified model of solar energetic particle trans789 port in structured solar wind. J. Geophys. Res. [Space Phys.], 114, A05102, 2009, DOI: 10.1029/2008JA013837. [CrossRef]
  • Kozarev, K.A., R.M. Evans, N.A. Schwadron, M.A. Dayeh, M. Opher, K.E. Korreck, and B. van der Holst. Global numerical modeling of energetic proton acceleration in a coronal mass ejection traveling through the solar corona. ApJ, 778, 43, 2013, DOI: 10.1088/0004-637X/778/1/43. [CrossRef]
  • Kunow, S.W., G. Wibberenz, G. Green, R. Müller-Mellin, and M.-B. Kallenrode. Energetic particles in the inner heliosphere. In: R. Schwenn, and E. Marsch, Editors. Physics of the Inner Heliosphere II, Springer, Berlin, 243–330, 1991. [CrossRef]
  • Lario, D., B. Sanahuja, and A.M. Heras. Energetic particle events: efficiency of interplanetary shocks as 50 keV < E < 100 MeV proton accelerators. ApJ, 509, 415–434, 1998, DOI: 10.1086/306461. [NASA ADS] [CrossRef]
  • Lario, D., R.B. Decker, E.C. Roelof, D.B. Reisenfeld, and T.R. Sanderson. Low-energy particle response to CMEs during the Ulysses solar maximum northern polar passage. J. Geophys. Res. [Space Phys.], 109 (A18), A01107, 2004, DOI: 10.1029/2003JA010071. [CrossRef]
  • Lee, M.A. Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks. J. Geophys. Res., 88, 6109–6119, 1983a, DOI: 10.1029/JA088iA08p06109. [NASA ADS] [CrossRef]
  • Lee, M.A. The association of energetic particles and shocks in the heliosphere. Rev. Geophys. Space Phys., 21, 324–338, 1983b, DOI: 10.1029/RG021i002p00324. [CrossRef]
  • Lee, M.A. Coupled hydromagnetic wave excitation and ion acceleration at an evolving coronal/interplanetary shock. ApJS, 158, 38–67, 2005, DOI: 10.1086/428753. [NASA ADS] [CrossRef]
  • Lee, M.A., R.A. Mewaldt, and J. Giacalone. Shock acceleration of ions in the heliosphere. Space Sci. Rev., 173, 247–281, 2012, DOI: 10.1007/s11214-012-9932-y. [NASA ADS] [CrossRef]
  • Li, G., and G.P. Zank. Mixed particle acceleration at CME-driven shocks and flares. Geophys. Res. Lett., 32, 2101–2104, 2005, DOI: 10.1029/2004GL021250. [NASA ADS] [CrossRef]
  • Li, G., G.P. Zank, and W.K.M. Rice. Energetic particle acceleration and transport at coronal mass ejection-driven shocks. J. Geophys. Res. [Space Phys.], 108, 1082, 2003, DOI: 10.1029/2002JA009666. [CrossRef]
  • Liu, Y., J.G. Luhmann, R. Müller-Mellin, P.C. Schroeder, L. Wang, et al. A comprehensive view of the 2006 December 13 CME: from the Sun to interplanetary space, ApJ, 689, 563–571, 2008, DOI: 10.1086/592031. [NASA ADS] [CrossRef]
  • Luhmann, J.G., S.A. Ledvina, D. Odstrcil, M.J. Owens, X.-P. Zhao, Y. Liu, and P. Riley. Cone model-based SEP event calculations for applications to multipoint observations. Adv. Space Res., 46, 1–21, 2010, DOI: 10.1016/j.asr.2010.03.011. [CrossRef]
  • Manchester IV, W.B., T.I. Gombosi, D.L. De Zeeuw, I.V. Sokolov, I.I. Roussev, K.G. Powell, J. Kóta, G. Tóth, and T.H. Zurbuchen. Coronal mass ejection shock and sheath structures relevant to particle acceleration. ApJ, 622, 1225–1239, 2005, DOI: 10.1086/427768. [NASA ADS] [CrossRef]
  • Manchester IV, W.B., A. Vourlidas, G. Tóth, N. Lugaz, I.I. Roussev, I.V. Sokolov, T.I. Gombosi, D.L. De Zeeuw, and M. Opher. Three-dimensional MHD Simulation of the 2003 October 28 coronal mass ejection: comparison with LASCO coronagraph observations. ApJ, 684, 1448–1460, 2008, DOI: 10.1086/590231. [NASA ADS] [CrossRef]
  • McComas, D.J., S.J. Bame, P. Barker, W.C. Feldman, J.L. Phillips, P. Riley, and J.W. Griffee. Solar wind electron proton alpha monitor (SWEPAM) for the advanced composition explorer. Space Sci. Rev., 86, 563–612, 1998, DOI: 10.1023/A:1005040232597. [NASA ADS] [CrossRef]
  • Pomoell, J., and R. Vainio. Influence of solar wind heating formulations on the properties of shocks in the corona. ApJ, 745, 151, 2012, DOI: 10.1088/0004-637X/745/2/151. [NASA ADS] [CrossRef]
  • Reames, D.V. Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev., 90, 413–491, 1999. [NASA ADS] [CrossRef]
  • Reames, D.V., L.M. Barbier, and C.K. Ng. The spatial distribution of particles accelerated by coronal mass ejection-driven shocks, ApJ, 466, 473, 1996, DOI: 10.1086/177525. [NASA ADS] [CrossRef]
  • Rice, W.K.M., G.P. Zank, and G. Li. Particle acceleration and coronal mass ejection driven shocks: shocks of arbitrary strength. J. Geophys. Res. [Space Phys.], 108, 1369, 2003, DOI: 10.1029/2002JA009756. [CrossRef]
  • Rodriguez, L., A.N. Zhukov, C. Cid, Y. Cerrato, E. Saiz, et al. Three frontside full halo coronal mass ejections with a nontypical geomagnetic response, Space Weather, 7, S06003, 2009, DOI: 10.1029/2008SW000453. [CrossRef]
  • Rodríguez-Gasén, R. Modelling SEP events: Latitudinal and longitudinal dependence of the injection rate of shock-accelerated protons and their flux profiles. Ph.D. thesis, Dep. Astronomia i Meteorologia, Universitat de Barcelona, Barcelona, Spain, 2011. URL
  • Rodríguez-Gasén, R., A. Aran, B. Sanahuja, C. Jacobs, and S. Poedts. Why should the latitude of the observer be considered when modeling gradual proton events? An insight using the concept of cobpoint. Adv. Space Res., 47, 2140–2151, 2011, DOI: 10.1016/j.asr.2010.03.021. [CrossRef]
  • Rodríguez-Gasén, R., A. Aran, B. Sanahuja, C. Jacobs, and S. Poedts. Variation of proton flux profiles with the observer’s latitude in simulated gradual SEP events. Sol. Phys., 289, 1745–1762, 2014, DOI: 10.1007/s11207-013-0442-1. [CrossRef]
  • Rouillard, A.P., D. Odstrcil, N.R. Sheeley, A. Tylka, A. Vourlidas, et al. Interpreting the properties of solar energetic particle events by using combined imaging and modeling of interplanetary shocks. ApJ, 735, 7, 2011. [NASA ADS] [CrossRef]
  • Ruffolo, D. Effect of adiabatic deceleration on the focused transport of solar cosmic rays, ApJ, 442, 861–874, 1995, DOI: 10.1086/175489. [NASA ADS] [CrossRef]
  • Sanahuja, B., V. Domingo, K.-P. Wenzel, J.A. Joselyn, and E. Keppler. A large proton event associated with solar filament activity. Sol. Phys., 84, 321–337, 1983, DOI: 10.1007/BF00157465. [CrossRef]
  • Sauer, H.H. GOES observations of energetic protons to E > 685 MeV: description and data comparison. In: D.A. Leahy, R.B. Hickws, and D. Venkatesan, Editors. 23rd International Cosmic Ray Conference, vol. 3, World Scientific, Singapore, 250, 1993.
  • Shen, F., X.S. Feng, S.T. Wu, C.Q. Xiang, and W.B. Song. Three-dimensional MHD simulation of the evolution of the April 2000 CME event and its induced shocks using a magnetized plasma blob model. J. Geophys. Res. [Space Phys.], 116, A04102, 2011, DOI: 10.1029/2010JA015809.
  • Smith, C.W., J. L’Heureux, N.F. Ness, M.H. Acuña, L.F. Burlaga, and J. Scheifele. The ACE magnetic fields experiment. Space Sci. Rev., 86, 613–632, 1998, DOI: 10.1023/A:1005092216668. [NASA ADS] [CrossRef]
  • Storini, M., E.G. Cordaro, and M. Parisi. The December 2006 GLE event as seen from LARC, SVIRCO and OLC. International Cosmic Ray Conference, 1, 273–276, 2008.
  • Torsti, J., E. Valtonen, M. Lumme, P. Peltonen, T. Eronen, et al. Energetic particle experiment ERNE, Sol. Phys., 162, 505–531, 1995, DOI: 10.1007/BF00733438. [NASA ADS] [CrossRef]
  • Tylka, A.J., C.M.S. Cohen, W.F. Dietrich, M.A. Lee, C.G. Maclennan, R.A. Mewaldt, C.K. Ng, and D.V. Reames. Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. ApJ, 625, 474–495, 2005, DOI: 10.1086/429384. [NASA ADS] [CrossRef]
  • Vainio, R., and T. Laitinen. Monte Carlo simulations of coronal diffusive shock acceleration in self-generated turbulence, ApJ, 658, 622–630, 2007, DOI: 10.1086/510284. [NASA ADS] [CrossRef]
  • Vainio, R., and T. Laitinen. Simulations of coronal shock acceleration in self-generated turbulence. J. Atmos. Sol. Terr. Phys., 70, 467–474, 2008, DOI: 10.1016/j.jastp.2007.08.064. [NASA ADS] [CrossRef]
  • Vainio, R., A. Pönni, M. Battarbee, H.E.J. Koskinen, A. Afanasiev, and T. Laitinen. A semi-analytical foreshock model for energetic storm particle events inside 1 AU. J. Space Weather Space Clim., 4, A08, 2014, DOI: 10.1051/swsc/2014005. [CrossRef] [EDP Sciences]
  • Verkhoglyadova, O.P., G. Li, G.P. Zank, Q. Hu, and R.A. Mewaldt. Using the path code for modeling gradual SEP events in the inner heliosphere, ApJ, 693, 894–900, 2009, DOI: 10.1088/0004-637X/693/1/894. [CrossRef]
  • Verkhoglyadova, O.P., G. Li, G.P. Zank, Q. Hu, C.M.S. Cohen, et al. Understanding large SEP events with the PATH code: modeling of the 13 December 2006 SEP event. J. Geophys. Res., 115 (A14), A12103, 2010, DOI: 10.1029/2010JA015615. [NASA ADS] [CrossRef]
  • Verkhoglyadova, O.P., G. Li, X. Ao, and G.P. Zank. Radial dependence of peak proton and iron ion fluxes in solar energetic particle events: application of the PATH code. ApJ, 757, 75, 2012, DOI: 10.1088/0004-637X/757/1/75. [CrossRef]
  • von Rosenvinge, T.T., D.V. Reames, R. Baker, J. Hawk, J.T. Nolan, et al. The high energy telescope for STEREO. Space Sci. Rev, 136, 391–435, 2008, DOI: 10.1007/s11214-007-9300-5. [NASA ADS] [CrossRef]
  • Wang, Y., G. Qin, and M. Zhang. Effects of perpendicular diffusion on energetic particles accelerated by the interplanetary coronal mass ejection shock. ApJ, 752, 37, 2012, DOI: 10.1088/0004-637X/752/1/37. [CrossRef]
  • Watermann, J., P. Wintoft, B. Sanahuja, E. Saiz, S. Poedts, et al. Models of solar wind structures and their interaction with the Earth’s space environment, Space Sci. Rev., 147, 233–270, 2009, DOI: 10.1007/s11214-009-9494-9. [CrossRef]
  • Weber, E.J., and L. Davis Jr. The angular momentum of the solar wind. ApJ, 148, 217–227, 1967, DOI: 10.1086/149138. [NASA ADS] [CrossRef]
  • Zank, G.P., W.K.M. Rice, and C.C. Wu. Particle acceleration and coronal mass ejection driven shocks: a theoretical model. J. Geophys. Res., 105, 25079–25096, 2000, DOI: 10.1029/1999JA000455. [NASA ADS] [CrossRef]
  • Zurbuchen, T.H., and I.G. Richardson. In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev., 123, 31–43, 2006, DOI: 10.1007/s11214-006-9010-4. [NASA ADS] [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.