Open Access
Issue
J. Space Weather Space Clim.
Volume 5, 2015
Article Number A11
Number of page(s) 10
DOI https://doi.org/10.1051/swsc/2015012
Published online 04 June 2015
  • Arnold, F. Atmospheric Aerosol and cloud condensation nuclei formation: a possible influence of cosmic rays? Space Sci. Rev., 125 (1–4), 169–186, 2006. [CrossRef] [Google Scholar]
  • Balling Jr., R.C., and R.S. Cerveny. Cosmic ray flux impact on clouds? An analysis of radiosondes, cloud cover, and surface temperature records from the United States. Theor. Appl. Climatol., 75, 225–231, 2003. [CrossRef] [Google Scholar]
  • Čalogović, J., C. Albert, F. Arnold, J. Beer, L. Desorgher, and E.O. Flueckiger. Sudden cosmic ray decreases: no change of global cloud cover. Geophys. Res. Lett., 37, L03802, 2010, DOI: 10.1029/2009GL041327. [Google Scholar]
  • Dunne, E., L. Lee, C. Reddington, and K.S. Carslaw. No statistically significant effect of a short-term decrease in the nucleation rate on atmospheric aerosols. Atmos. Chem. Phys., 12 (23), 11573–11587, 2012. [CrossRef] [Google Scholar]
  • Erlykin, A.D., G. Gyalai, K. Kudela, T. Sloan, and A.W. Wolfendale. Some aspects of ionization and the cloud cover, cosmic ray correlation problem. J. Atmos. Sol. Terr. Phys., 71 (8–9), 823–829, 2009a, DOI: 10.1016/j.jastp.2009.03.007. [CrossRef] [Google Scholar]
  • Erlykin, A.D., T. Sloan, and A.W. Wolfendale. The search for cosmic ray effects on clouds. J. Atmos. Sol. Terr. Phys., 71 (8–9), 955–958, 2009b, DOI: 10.1016/j.jastp.2009.03.019. [CrossRef] [Google Scholar]
  • Erlykin, A.D., G. Gyalai, K. Kudela, T. Sloan, and A.W. Wolfendale. On the correlation between cosmic ray intensity and cloud cover. J. Atmos. Sol. Terr. Phys., 71, 1794–1806, 2009c, DOI: 10.1016/j.jastp.2009.06.012. [CrossRef] [Google Scholar]
  • Erlykin, A., T. Sloan, and A. Wolfendale. Correlations of clouds, cosmic rays and solar irradiation over the Earth. J. Atmos. Sol. Terr. Phys., 72, 151–156, 2010, DOI: 10.1016/j.jastp.2009.11.002. [CrossRef] [Google Scholar]
  • Erlykin, A., T. Sloan, and A. Wolfendale. A review of the relevance of the “CLOUD” results and other recent observations to the possible effect of cosmic rays on the terrestrial climate. Meteorol. Atmos. Phys., 121, 137–142, 2013, DOI: 10.1007/s00703-013-0260-x. [CrossRef] [Google Scholar]
  • Farrar, P. Are cosmic rays influencing oceanic cloud coverage – or is it only el nino? Clim. Change, 47, 7–15, 2000. [CrossRef] [Google Scholar]
  • Kazil, J., K. Zhang, P. Stier, J. Feichter, U. Lohmann, and K. O’Brien. The present-day decadal solar cycle modulation of Earth’s radiative forcing via charged H2SO4/H20 aerosol nucleation. Geophys. Res. Lett., 39, 2, 2012. [CrossRef] [Google Scholar]
  • Kirkby, J., J. Curtius, J. Almeida, E. Dunne, and J. Duplissy, et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 476, 429–433, 2011. [CrossRef] [Google Scholar]
  • Kristjansson, J.E., A. Staple, and J. Kristiansen. A new look at possible connections between solar activity, clouds and climate. Geophys. Res. Lett., 29, 2017, 2002. [CrossRef] [Google Scholar]
  • Kristjansson, J., J. Kristiansen, and E. Kaas. Solar activity, cosmic rays, clouds and climate – an update. Adv. Space Res., 34, 407–415, 2004. [CrossRef] [Google Scholar]
  • Kristjannson, J., C.W. Stjern, F. Stordal, A.M. Fjaeraa, G. Myhre, and K. Jonasson. Cosmic rays, cloud condensation nuclei and clouds – a reassessments using MODIS data. Atmos. Chem. Phys., 8, 7373–7387, 2008. [CrossRef] [Google Scholar]
  • Laken, B.A., and J. Čalogović. Solar irradiance, cosmic rays and cloudiness over daily timescales. Geophys. Res. Lett., 38, L24811, 2011, DOI: 10.1029/2011GL048764. [CrossRef] [Google Scholar]
  • Laken, B.A., and J. Čalogović. Composite analysis with Monte Carlo methods: an example with cosmic rays and clouds. J. Space Weather Space Clim., 3, A29, 2013. [Google Scholar]
  • Laken, B.A., and D. Kniveton. Forbush decreases and Antarctic cloud anomalies in the upper troposphere. J. Atmos. Sol. Terr. Phys., 73, 371–376, 2011, DOI: 10.1016/j.jastp.2010.03.008. [CrossRef] [Google Scholar]
  • Laken, B., D. Kniveton, and A. Wolfendale. Forbush decreases, solar irradiance variations, and anomalous cloud changes. J. Geophys. Res. [Atmos.], 116, D09201, 2011, DOI: 10.1029/2010JD014900. [CrossRef] [Google Scholar]
  • Laken, B.A., E. Palle, J. Čalogović, and E.M. Dunne. A cosmic ray-climate link and cloud observations. J. Space Weather Space Clim., 2, A18, 2012a, DOI: 10.1051/swsc/2012018. [CrossRef] [EDP Sciences] [Google Scholar]
  • Laken, B.A., E. Palle, and H. Miyahara. A decade of the moderate resolution imaging spectroradiometer: is a solar cloud link detectable? J. Clim., 25 (13), 4430–4440, 2012b. [CrossRef] [Google Scholar]
  • Laut, P. Solar activity and terrestrial climate: an analysis of some purported correlations. J. Atmos. Sol. Terr. Phys., 65, 801–812, 2003. [CrossRef] [Google Scholar]
  • Lean, J., and D. Rind. Climate forcing by changing solar radiation. J. Clim., 11, 3069–3094, 1998. [CrossRef] [Google Scholar]
  • Livezey, R.E., and W.Y. Chen. Statisical field significance and its determination by Monte Carlo techniques. Monthly Weather Review, 111, 46–59, 1983. [CrossRef] [Google Scholar]
  • Marsh, N., and H. Svensmark. Cosmic rays, clouds and climate. Space Sci. Rev., 94, 215–230, 2000. [NASA ADS] [CrossRef] [Google Scholar]
  • Mesinger, F., G. DiMego, E. Kalnay, K. Mitchel, P.C. Shafran, et al. North American Regional Reanalysis. Bull. Am. Meteorol. Soc., 87 (3), 343–360, 2006. [CrossRef] [Google Scholar]
  • Palle, E. Possible satellite perspective effects on the reported correlations between solar activity and clouds. Geophys. Res. Lett, 32, L03802, 2005. [Google Scholar]
  • Palus, M., J. Kurths, U. Schwarz, N. Seehafer, D. Novotna, and T. Charvatova. The Solar Activity Cycle is Weakly Synchronized with the Solar Inertial Motion. Phys. Lett. A, 365 (5-6), 421–428, 2007, DOI: 10.1016/j.physleta.2007.01.039. [CrossRef] [Google Scholar]
  • Roy, I., and J. Haigh. Solar cycle signals in sea level pressure and sea surface temperature. Atmos. Chem. Phys., 10, 3147–3153, 2010. [CrossRef] [Google Scholar]
  • Snow-Kropla, E., J. Pierce, D. Westervelt, and W. Trivitayanurak. Cosmic rays, aerosol formation and cloud-condensation nuclei: sensitivities to model uncertainties. Atmos. Chem. Phys., 11 (8), 4001–4013, 2011. [CrossRef] [Google Scholar]
  • Svensmark, H. Cosmic rays and earth’s climate Space Sci. Rev., 155–166, 2000. [Google Scholar]
  • Svensmark, H., and E. Friis-Christensen. Variation of cosmic ray flux and global cloud coverage – a missing link in solar-climate relationships. J. Atmos. Sol. Terr. Phys., 59, 1225–1232, 1997. [Google Scholar]
  • Udelhofen, P., and R. Cess. Cloud cover variations over the United States: An influence of cosmic rays or solar variability? Geophys. Res. Lett., 28, 2517–2620, 2001. [CrossRef] [Google Scholar]
  • Usoskin, I.G., and G. Kovaltsov. Cosmic rays and climate of the Earth: possible connection. C.R. Geosci., 340, 441–450, 2008. [CrossRef] [Google Scholar]
  • Voiculescu, M., and I. Usoskin. Persistent solar signatures in cloud cover: spatial and temporal analysis. Environ. Res. Lett., 7, 044004, 2012. [CrossRef] [Google Scholar]
  • Voiculescu, M., I. Usoskin, and K. Mursula. Different response of clouds to solar input, Geophys. Res. Lett., 33, L21802, 2006. [CrossRef] [Google Scholar]
  • Wilks, D.S. On “Field Significance”, and the false discovery rate. Journal of Applied Meteorology and Climatology, 45, 1181–1189, 2006a. [Google Scholar]
  • Wilks, D.S. Statistical methods in the atmosphere sciences, 100, 170–176, 2006b. [Google Scholar]
  • Yu, F. Altitude variations of cosmic ray induces production of aerosols: implications for global cloudiness and climate. J. Geophys. Res., 107, 1118, 2002. [CrossRef] [Google Scholar]
  • Zhao, Q., T. Black, and M. Baldwin. Implementation of the cloud prediction scheme in the Eta model at NCEP, Weather Forecast, 697–712, 1997. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.