Open Access
J. Space Weather Space Clim.
Volume 5, 2015
Article Number A9
Number of page(s) 15
Published online 17 April 2015
  • Araujo-Pradere, E.A., T.J. Fuller-Rowell, and M.V. Codrescu. STORM: An empirical storm-time ionospheric correction model 1. Model description. Radio Sci., 37, 1070, 2002, DOI: 107010.1029/2001RS002447. [Google Scholar]
  • Belehaki, A., Lj. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, and M. Hatzopoulos. DIAS project: The establishment of a European digital upper atmosphere server. J. Atmos. Sol. Terr. Phys., 67 (12), 1092–1099, 2005. [CrossRef] [Google Scholar]
  • Belehaki, A., Lj. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, and M. Hatzopoulos. Monitoring and forecasting the ionosphere over Europe: The DIAS project. Space Weather, 4, s12002, 2006, DOI: 10.1029/2006SW000270. [Google Scholar]
  • Belehaki, A., Lj. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, and M. Hatzopoulos. Ionospheric specification and forecasting based on observations from European ionosondes participating in DIAS project. Acta Geophys., 55 (3), 398–409, 2007, DOI: 10.2478/s11600-007-0010-x. [NASA ADS] [CrossRef] [Google Scholar]
  • Bilitza, D. International Reference Ionosphere 2000. Radio Sci., 36 (2), 261–276, 2001. [CrossRef] [Google Scholar]
  • CCIR. Atlas of Ionospheric Characteristics, Comité Consultatif International des Radiocommunications, Report 340-6, International Telecommunications Union, Geneva, 1991. [Google Scholar]
  • Echer, E., W.D. Gonzalez, B.T. Tsurutani, and A.L.C. Gonzalez. Interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT) during solar cycle 23 (1996–2006). J. Geophys. Res., 113, A05221, 2008, DOI: 10.1029/2007JA012744. [Google Scholar]
  • Echer, E., B.T. Tsurutani, and W.D. Gonzalez. Interplanetary origins of moderate (−100 nT <Dst ≤ −50 nT) geomagnetic storms during solar cycle 23 (1996–2008). J. Geophys. Res., 118, 385–392, 2013, DOI:10.1029/2012JA018086. [Google Scholar]
  • Forbes, J.M., S.E. Palo, and X. Zhang. Variability of the ionosphere. J. Atmos. Sol. Terr. Phys., 62, 685–693, 2000. [Google Scholar]
  • Gonzalez, W.D., and B.T. Tsurutani. Criteria of interplanetary parameters causing intense magnetic storms (Dst < −100 nT). Planet. Space Sci., 35, 1101–1109, 1987. [Google Scholar]
  • Gonzalez, W.D., B.T. Tsurutani, and A.L. Gonzalez. Interplanetary origin of geomagnetic storms. Space Sci. Rev., 88, 529–562, 1999. [Google Scholar]
  • Gonzalez, W.D., A.L.C. de Gonzalez, J.H.A. Sobral, A. Dal Lago, and L.E. Vieira. Solar and interplanetary causes of very intense geomagnetic storms. J. Atmos. Sol. Terr. Phys., 63 (5), 403–412, 2001. [CrossRef] [Google Scholar]
  • Hunsucker, R.D., and J.K. Hargreaves. The high latitude ionosphere and its effects in radio propagation, Cambridge University Press, Cambridge, UK, ISBN: 0521330831, 2003. [Google Scholar]
  • Kazimirovsky, E.S., and V.D. Kokourov. The tropospheric and stratospheric effects in the ionosphere. J. Geomag. Geoelectr., 43 (Suppl.), 551–562, 1991. [CrossRef] [Google Scholar]
  • Koutroumbas, K., I. Tsagouri, and A. Belehaki. Time series autoregression technique implemented on-line in DIAS system for ionospheric forecast over Europe. Ann. Geophys., 26, 371–386, 2008. [Google Scholar]
  • Lilensten, J., Lj. R. Cander, M.T. Rietveld, P.S. Cannon, and M. Barthelemy. Comparison of EISCAT and ionosonde electron densities: application to a ground-based ionospheric segment of a space weather programme. Ann. Geophys., 23, 183–189, 2005. [CrossRef] [Google Scholar]
  • Mendillo, M., H. Rishbeth, R. Roble, E. Damboise, and J. Wroton. Ionospheric variability originating from tropospheric and stratospheric sources. EOS Transactions, 79 (17), 238, 1998. [CrossRef] [Google Scholar]
  • Muhtarov, P., I. Kutiev, and L. Cander. Geomagnetically correlated autoregression model for short-term prediction of ionospheric parameters. Inverse Prob., 18, 49–65, 2002. [CrossRef] [Google Scholar]
  • Pokhotelov, D., P.T. Jayachandran, C.N. Mitchell, and M.H. Denton. High-latitude ionospheric response to co-rotating interaction region- and coronal mass ejection-driven geomagnetic storms revealed by GPS tomography and ionosondes. Proc. R. Soc. London: Ser. A, 466, 3391–3408, 2010, DOI: 10.1098/rspa.2010.0080. [Google Scholar]
  • Prölss, G.W. On explaining the local time variation of ionospheric storm effects. Ann. Geophys., 11, 1–9, 1993. [Google Scholar]
  • Richardson, I.G., and H.V. Cane. Near-earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): Catalog and summary of properties. Sol. Phys., 264 (1), 189–237, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Richardson, I.G. Geomagnetic activity during the rising phase of solar cycle 24. J. Space Weather Space Clim., 3, A08, 2013. [CrossRef] [EDP Sciences] [Google Scholar]
  • Richardson, I.G, and H.V. Cane. Solar wind drivers of geomagnetic storms during more than four solar cycles. J. Space Weather Space Clim., 2, A01, 2012. [Google Scholar]
  • Tsagouri, I., A. Belehaki, G. Moraitis, and H. Mavromihalaki. Positive and negative ionospheric disturbances at middle latitudes during geomagnetic storms. Geophys. Res. Lett., 27 (21), 3579–3582, 2000. [Google Scholar]
  • Tsagouri, I., and A. Belehaki. A new empirical model of middle latitude ionospheric response for space weather applications. Adv. Space Res., 37, 420–425, 2006. [Google Scholar]
  • Tsagouri, I., and A. Belehaki. An upgrade of the solar wind driven empirical model for the middle latitude ionospheric storm time response. J. Atmos. Sol. Terr. Phys., 70 (16), 2061–2076, 2008, DOI: 10.1016/j.jastp.2008.09.010. [Google Scholar]
  • Tsagouri, I., K. Koutroumbas, and A. Belehaki. Ionospheric foF2 forecast over Europe based on an autoregressive modeling technique driven by solar wind parameters. Radio Sci., 44, RS0A35, 2009, DOI: 10.1029/2008RS004112. [CrossRef] [Google Scholar]
  • Tsagouri, I. Evaluation of the performance of DIAS ionospheric forecasting models. J. Space Weather and Space Clim., 1, A02, 2011, DOI: 10.1051/swsc/2011110003. [Google Scholar]
  • Tsurutani, B.T., and W.D. Gonzalez. The future of geomagnetic storm predictions: implications from recent solar and interplanetary observations. J. Atmos. Sol. Terr. Phys., 57, 1369–1384, 1995. [Google Scholar]
  • Tsurutani, B., E. Echer, K. Shibata, O. Verkhoglyadova, A. Mannucci, W.D. Gonzalez, U. Janet, J.U. Kozyra, and M. Pätzold. The interplanetary causes of geomagnetic activity during the 7–17 March 2012 interval: a CAWSES II overview. J. Space Weather Space Clim., 4, A02, 2014. [CrossRef] [EDP Sciences] [Google Scholar]
  • Zhang, J., I.G. Richardson, D.F. Webb, N. Gopalswamy, E. Huttunen, et al. Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005. J. Geophys. Res., 112, A12105, 2007, DOI: 10.1029/2007JA012332. [CrossRef] [Google Scholar]
  • Zolesi, B., Lj. R. Cander, and G. De Franceschi. Simplified ionospheric regional model for telecommunication applications. Radio Sci., 28 (4), 603–612, 1993. [CrossRef] [Google Scholar]
  • Zolesi, B., and Lj. R. Cander. The European COST (Co-operation in the field of Scientific and Technical Research) Actions: an important chance to cooperate and to grow for all the international ionospheric community. In: J. Goodman, Proceedings of the 12th International Ionospheric Effects Symposium, 13–15 May 2008, Alexandria, VA, USA, 2008, 110–117 (available from, PB2008112709). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.