Open Access
Issue |
J. Space Weather Space Clim.
Volume 5, 2015
|
|
---|---|---|
Article Number | A29 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/swsc/2015030 | |
Published online | 26 August 2015 |
- Bapanayya, C., P.A. Raju, S.D. Sharma, and D.S. Ramesh. Information theory-based measures of similarity for imaging shallow-mantle discontinuities. Lithosphere, 3, 289, 2011, DOI: 10.1130/L152.1. [CrossRef] [Google Scholar]
- Brajsa, R., H. Wähl, A. Hanslmeier, G. Verbanac, D. Ruždjak, E. Cliver, L. Svalgaard, and M. Roth. On solar cycle predictions and reconstructions. A&A, 496, 855, 2009, DOI: 10.1051/0004-6361:200810862. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Carbone, A., G. Castelli, and H.E. stanley. Analysis of clusters formed by the moving average of a long-range correlated time series. Phys. Rev. E, 69, 026105, 2004, DOI: 10.1103/PhysRevE.69.026105. [CrossRef] [Google Scholar]
- Choudhuri, A.R., and B. Karak. Origin of Grand minima in sunspot cycles. Phys. Rev. Lett., 109, 171103, 2012, DOI: 10.1103/PhysRevLett.109.171103. [NASA ADS] [CrossRef] [Google Scholar]
- Das Sharma, S., D.S. Ramesh, C. Bapanayya, and P.A. Raju. Sea surface temperatures in cooler climate stages bear more similarity with atmospheric CO2 forcing. J. Geophys. Res. [Atmos.], 117, 13, 2012, DOI: 10.1029/2012JD017725. [CrossRef] [Google Scholar]
- De Michelis, P., G. Consolini, M. Materassi, and R. Tozzi. An information theory approach to the storm-substorm relationship. J. Geophys. Res., 116, A08225, 2011, DOI: 10.1029/2011JA016535. [Google Scholar]
- De Toma, G., S.E. Gibson, B.A. Emery, and C.N. Arge. The Minimum Between Cycle 23 and 24: Is sunspot number the whole story? ASP Conf. Ser., 428, 217, 2010. [Google Scholar]
- Dikpati, M., and P. Charbonneau. A Babcock-Leighton flux transport dynamo with solar-like differential rotation. Astrophys. J., 518, 508, 1999, DOI: 10.1086/307269. [Google Scholar]
- Dikpati, M., and P. Gilman. Global solar dynamo models: simulations and predictions. J. Astrophys. Astron., 29, 29, 2008, DOI: 10.1007/s12036-008-0004-3. [CrossRef] [Google Scholar]
- Dikpati, M., G. De Toma, and P. Gilman. Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys. Res. Lett., 33, L05102, 2006, DOI: 10.1029/2005GL025221. [NASA ADS] [CrossRef] [Google Scholar]
- Echer, E., B.T. Tsurutani, and W.D. Gonzalez. Extremely low geomagnetic activity during the recent deep solar cycle minimum. Proceedings IAU Symposium 286, 2012, DOI: 10.1017/S174392131200484X. [Google Scholar]
- Emmert, J.T., J.L. Lean, and J.M. Picone. Record-low thermospheric density during the 2008 solar minimum. Geophys. Res. Lett., 37, L12102, 2010, DOI: 10.1029/2010GL043671. [Google Scholar]
- Ermolli, I., K. Matthes, T. Dudokdewit, N.A. Krivova, K. Tourpali, et al. Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys. Discuss., 12, 24557, 2012, DOI: 10.5194/acpd-12-24557-2012. [NASA ADS] [CrossRef] [Google Scholar]
- Feynman, J. Geomagnetic and solar wind cycles, 1900–1975. J. Geophys. Res., 87 (A8), 6153, 1982, DOI: 10.1029/JA087iA08p06153. [NASA ADS] [CrossRef] [Google Scholar]
- Fröhlich, C. Total solar irradiance: what have we learned from the last three cycles and the recent minimum. Space Sci. Rev., 176, 237, 2013, DOI: 10.1007/s11214-011-9780-1. [NASA ADS] [CrossRef] [Google Scholar]
- Gleissberg, W. A long periodic fluctuations of the Sun-spot numbers. The Observatory, 62, 158, 1939. [Google Scholar]
- Hale, G.E., F. Ellerman, S.B. Nicholson, and A.H. Joy. The magnetic polarity of sun-spots. Astrophys. J., 49, 153, 1919, DOI: 10.1086/142452. [CrossRef] [Google Scholar]
- Hathaway, D.H., and L. Upton. The solar meridional circulation and sunspot cycle variability. J. Geophys. Res., 119, 3316, 2014, DOI: 10.1002/2013JA019432. [Google Scholar]
- Hathaway, D.H., and R.M. Wilson. Geomagnetic activity indicates large amplitude for sunspot cycle 24. Geophys. Res. Lett., 33, L18101, 2006, DOI: 10.1029/2006GL027053. [Google Scholar]
- Hathaway, D.H., R.M. Wilson, and E.J. Reichmann. The shape of the sunspot cycle. Sol. Phys., 151, 177, 1994, DOI: 10.1007/BF00654090. [Google Scholar]
- Haigh, J.D., R. Winning, R. Toumi, and J.W. Harder. An influence of solar spectral variations on radiative forcing of climate. Nature, 467, 696, 2010, DOI: 10.1038/nature09426. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hajra, R., B.T. Tsurutani, E. Echer, and W.D. Gonzalez. Relativistic electron acceleration during high-intensity, long-duration, continuous AE activity (HILDCAA) events: solar cycle phase dependences. Geophys. Res. Lett., 41, 1876–1881, 2014, DOI: 10.1002/2014GL059383. [CrossRef] [Google Scholar]
- Jager, C., and S. Duhau. Sudden transitions and grand variations in the solar dynamo past and future. J. Space Weather Space Clim., 2, A07, 2012, DOI: 10.1051/swsc/2012008. [CrossRef] [EDP Sciences] [Google Scholar]
- Kakad, B. A new method for prediction of peak sunspot number and ascent time of the solar Cycle. Sol. Phys., 270, 393, 2011, DOI: 10.1007/s11207-011-9726-5. [Google Scholar]
- Kane, R.P. Prediction of the sunspot maximum of solar cycle 23 by extrapolation of spectral components. Sol. Phys., 189, 217, 1999, DOI: 10.1023/A:1005298313886. [NASA ADS] [CrossRef] [Google Scholar]
- Kane, R.P. A preliminary estimate of the size of the coming solar cycle 24, based on Ohls precursor method. Sol. Phys., 243, 205, 2007, DOI: 10.1007/s11207-007-0475-4. [NASA ADS] [CrossRef] [Google Scholar]
- Kilcik, A., C.N.K. Anderson, J.P. Rozelot, H. Ye, G. Sugihara, and A. Ozguc. Nonlinear prediction of solar cycle 24. Astrophys. J., 693, 11–73, 2009, DOI: 10.1088/0004-637X/693/2/1173. [Google Scholar]
- Knuth, K.H. Optimal data-based binning for histograms. ArXiv Physics e-prints, 2013, arXiv:physics/0605197v2. [Google Scholar]
- Li, K.J., H.S. Yun, and X.M. Gu. On long-term predictions of the maximum sunspot numbers of solar cycles 21 to 23. A&A, 368, 285–285, 2001, DOI: 10.1051/0004-6361:20000547. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Materassi, M., A. Wernik, and E. Yodanova. Determining the verse of magnetic turbulent cascades in the Earths magnetospheric cusp via transfer entropy analysis: preliminary results. Nonlinear Process. Geophys., 14, 153, 2007, www.nonlin-processes-geophys.net/14/153/2007/. [CrossRef] [Google Scholar]
- McComas, D.J., R.W. Ebert, H.A. Elliott, B.E. Goldstein, J.T. Gosling, N.A. Schwadron, and R.M. Skoug. Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett., 35, L18103, 2008, DOI: 10.1029/2008GL034896. [NASA ADS] [CrossRef] [Google Scholar]
- Miyahara, H., K. Kitazawa, K. Nagaya, Y. Yokoyama, H. Matsuzaki, K. Masuda, T. Nakamura, and Y. Muraki. Is the sun heading for another Maunder minimum? Precursors of the Grand solar minima. J. Cosmol., 8, 19–70, 2010, http://journalofcosmology.com/ClimateChange104.html. [Google Scholar]
- Mörner, N.A. Planetary beat and solar-terrestrial responses. Pattern Recognit. Phys., 1, 107, 2013, DOI: 10.5194/prp-1-107-2013. [CrossRef] [Google Scholar]
- Ohl, A.I. Wolfs number prediction for the maximum of the cycle 20. Solnice. Dani., 12, 84, 1966. [Google Scholar]
- Oliver, R., and J.L. Ballester. Rescaled range analysis of the asymmetry of solar activity. Sol. Phys., 169, 215, 1996, DOI: 10.1007/BF00153842. [NASA ADS] [CrossRef] [Google Scholar]
- Peristykh, A.N., and P.E. Damon. Persistence of the Gleissberg 88-year solar cycle over the last 12,000 years: evidence from cosmogenic isotopes. J. Geophys. Res., 108 (A1), 1003, 2003, DOI: 10.1029/2002JA009390. [Google Scholar]
- Pesnell, W.D. Predictions of solar cycle 24. Sol. Phys., 252, 209, 2008, DOI: 10.1007/s11207-008-9252-2. [NASA ADS] [CrossRef] [Google Scholar]
- Petrovay, K. Solar cycle prediction. Living Rev. Sol. Phys., 7, 2010, DOI: 10.12942/lrsp-2010-6. [Google Scholar]
- Podladchikova, T., and R. Van der Linden. An upper limit prediction of the peak sunspot number for solar cycle 24. J. Space Weather Space Clim., 1, A01, 2011, DOI: 10.1051/swsc/2011110013. [CrossRef] [EDP Sciences] [Google Scholar]
- Ruzmaikin, A., J. Feynman, and P. Robinson. Long-term persistence of solar activity. Sol. Phys., 149, 395–395, 1994, DOI: 10.1007/BF00690625. [Google Scholar]
- Schatten, K. Fair space weather for solar cycle 24. Geophys. Res. Lett., 32, L21106, 2005, DOI: 10.1029/2005GL024363. [NASA ADS] [CrossRef] [Google Scholar]
- Scott, D.W. On optimal and data-based histograms. Biometrika, 66 (3), 605, 1979, DOI: 10.1093/biomet/66.3.605. [CrossRef] [MathSciNet] [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J., 27, 379, 1948. [Google Scholar]
- Solanki, S.K., N.A. Krivova, M. Schüssler, and M. Fligge. Search for relationship between solar cycle amplitude and length. A&A, 396, 1029, 2002, DOI: 10.1051/0004-6361:20021436. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Solomon, S.C., L. Qian, and A.G. Burns. The anomalous ionosphere between solar cycles 23 and 24. J. Geophys. Res., 118, 6524, 2013, DOI: 10.1002/jgra.50561. [Google Scholar]
- Svalgaard, L., E.W. Cliver, and Y. Kamide. Sunspot cycle 24: smallest cycle in 100 years. Geophys. Res. Lett., 32, L01104, 2005, DOI: 10.1029/2004GL021664. [NASA ADS] [CrossRef] [Google Scholar]
- Thompson, R.J. A technique for predicting the amplitude of the solar cycle. Sol. Phys., 148, 383, 1993, DOI: 10.1007/BF00645097. [NASA ADS] [CrossRef] [Google Scholar]
- Usoskin, I.G., S.K. Solanki, and G.A. Kovaltsov. Grand minima and maxima of solar activity: new observational constraints. A&A, 471, 301, 2007, DOI: 10.1051/0004-6361:20077704. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Usoskin, I.G., S.K. Solanki, and G.A. Kovaltsov. Grand minima of solar activity during the last millennia. Proceedings IAU Symposium, 7, 372, 2012, DOI: 10.1017/S174392131200511X. [Google Scholar]
- Wallis, K.F. A note on the calculation of entropy from histograms. Department of Economics, University of Warwick, UK, Tech. Rep, 2006. [Google Scholar]
- Wilson, R.M. On the level of skill in predicting maximum sunspot number: a comparative study of single variate and bivariate precursor techniques. Sol. Phys., 125, 143, 1990, DOI: 10.1007/BF00154784. [NASA ADS] [CrossRef] [Google Scholar]
- Wilson, R.M., D.H. Hathaway, and E.J. Reichmann. An estimate for the size of cycle 23 based on near minimum conditions. J. Geophys. Res., 103 (A4), 6595, 1998 [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.